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Abstract

We propose new methodology to estimate arbitrage portfolios by utilizing infor-
mation contained in firm characteristics for both abnormal returns and factor
loadings. The methodology gives maximal weight to risk-based interpretations
of characteristics’ predictive power before any attribution to abnormal returns.
We apply the methodology in simulated factor economies and to a large panel of
U.S. stock returns from 1965-2014. The methodology works well in simulation
and when applied to U.S. stocks. Empirically, we find the arbitrage portfolio has
(statistically and economically) significant alphas relative to several popular asset

pricing models and annualized Sharpe ratios ranging from 1.35 to 1.75.
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1 Introduction

Many variables have shown some ability to predict the cross section of asset returns.
This predictive power could be due to their ability to predict the cross section of sys-
tematic risk (beta); their ability to predict asset mispricing (alpha); and spurious cross-
sectional relations due to overfitting (data snooping). Rosenberg and McKibben (1973)
use 32 stock-level characteristics to predict the cross-section of systematic risk and
find a significant relation with a number of characteristics common in the subsequent
literature, such as asset size, book-to-market equity, share turnover, and a measure
of quality. Betas on portfolios formed using firm-level characteristics have had much
success in explaining the cross-section of returns (e.g., Fama and French (1993, 2015);
Hou et al. (2015)). Daniel and Titman (1997) argue that it is difficult to disentangle a
purely characteristics-based model (in which characteristics only predict alpha) from a
risk-based model because the characteristics and factor loadings in the characteristic-
sorted portfolios are collinear. In their influential approach to disentangling the beta
vs. alpha explanations, assets are sorted into portfolios based on lagged beta estimates
and firm characteristics. Returns on long—short portfolios made of long and short legs
with similar beta exposure but different levels of the characteristics are designed to
measure the pure returns to the characteristics. Similarly, returns on long—short port-
folios made of portfolios with similar levels of the characteristic but different levels
of beta exposure are designed to measure the pure risk premium. They find signifi-
cant characteristic-based returns, controlling for betas, but not for beta-based returns,
controlling for characteristics. These results rekindled the beta vs. alpha debate.

An issue with the double—sorting procedure arises when the true risk measures
are related to firm characteristics. Regression-based estimates of systematic risk are
often very noisy, and potentially stale, estimates of the true systematic risk. This
may lead to the characteristic predicting returns, holding estimated betas constant, not
because the characteristics predict abnormal returns, but because the characteristics
are better predictors of beta (Ferson and Harvey (1997) and Berk (2000)). Regression
estimates of systematic risks are known to be relatively imprecise. Furthermore, the
issue of staleness of the estimates is somewhat inescapable because the estimates are
usually backward-looking functions of unconditional covariances and variances. For

example, leverage in a firm’s capital structure implies equity betas are time-varying



and that time-series changes in equity betas will be related to changes in the firm’s
leverage. Since changes in firm size, book-to-market equity ratio, and the firm’s past
price movements are all correlated with leverage changes, commonly used characteristics
(such as market capitalization, book-to-market equity ratios, and momentum) might
help predict conditional betas, over and above the predictive power of unconditional
betas. In addition to (a) the issue of staleness, double sorting has the disadvantage
that (b) the approach handles one characteristic at a time and, hence, is unable to
analyze many characteristics simultaneously and (c) sorting into portfolios may mask
important variation in returns relative to using individual assets.

We propose a new methodology, which is an extension of the projected principal
components procedure (PPCA) of Fan et al. (2016). The estimator can accommodate
many characteristics simultaneously; can use individual assets, rather than portfolios;
and conditions systematic risk estimates on current values of firm characteristics. Thus,
the method addresses all three issues raised above. Our procedure gives characteristics
maximal explanatory power for risk premia before we attribute any explanatory power
to alphas.! We project time-series demeaned asset returns (which eliminates alpha) onto
the characteristics (or, potentially, onto the series expansions of the characteristics).
We then estimate the relation between factor betas and characteristics by applying
principal components (PCA) to the projected returns. Given the estimated systematic
factor loading function, we extract the relation between alpha and the characteristics
that has maximal cross-sectional explanatory power, conditional on being orthogonal
to the systematic factor loadings.

To illustrate the issue of characteristics versus noisy/stale estimates of beta and
highlight the advantage of our approach over the double-sorting method, we simulate
a simple economy in which the Capital Asset Pricing Model (CAPM) holds. Alpha,
or abnormal returns, are identically zero, but the true underlying betas are functions,
cross-sectionally, of a firm characteristic. The economy is simulated for 2,000 firms
and 2,000 months. We perform month-by-month rolling sorts of assets based on OLS
estimates of market betas (estimated over the previous sixty months) and the charac-
teristic. We report average returns of double-sorted (first on characteristic and then on

the estimated beta) portfolios in Table 1 (full details about the simulation are in the

Kozak et al. (2018) argue that the distinction between risk premia and abnormal returns is not
totally clear, because abnormal returns correlated with risk exposures are the only ones that would
survive arbitrage activities by investors.



table legend). Although the true return generating process is the CAPM, the return
differences of the high-minus-low characteristic portfolios (reported in the last row)
are statistically significant while the return differences of the high-minus-low estimated
beta portfolios (reported in the last column) are insignificant. Thus, the table seems to
be indicating a strong relation between the characteristic and abnormal returns in an
economy in which no abnormal returns exist. In contrast, when we apply our procedure
(described fully below) to this economy, we find that the relation between abnormal
returns and the characteristic is insignificantly different from zero (p-value of 0.82).

We also show that when there exists any relation between alpha and characteristics,
one can use our method to construct an arbitrage portfolio that exploits such a relation.
Our arbitrage portfolio weights are proportional to the estimated alpha function. We
first apply our estimator in simulation and explore its finite sample properties as well as
robustness to model misspecification. The estimator performs well in simulated factor
economies, which we calibrate to mimic the CRSP/Compustat panel.

We apply the procedure to U.S. stock return data using the characteristics data set
of Freyberger et al. (2019). In the baseline implementation, we use 12 months of data
to estimate the weights of the arbitrage portfolio and then hold the portfolio for one
month.? We then roll the estimation forward by one period and repeat the process.
Therefore, we obtain portfolio returns that are out-of-sample relative to the estimation
period, in the sense that the arbitrage portfolio weights for period ¢ only use information
from periods prior to ¢. The arbitrage portfolio has (statistically and economically)
significant alphas relative to several popular asset pricing models and annualized Sharpe
ratios ranging from 1.35 to 1.75 (depending on the number of systematic factors we
estimate).

One possible way that data snooping could creep into the analysis is through the
selection of firm characteristics, which may be based on studies that use data over
the same sample period used to estimate the portfolio weights. As a check for this,
we test for a trend in alpha over our sample period. Data snooping would lead us to
expect a trend toward zero. We do find a slight downward trend, but it is economically
inconsequential.

Our approach allows us to make a number of contributions to empirical asset pric-

2We also provide the robustness of our results when we use 24 or 36 months to estimate the weights
of the arbitrage portfolio. We also show that the results are robust to alternative rebalancing periods.
See Tables A.9-A.13 in the Appendix.



ing. First, we provide useful guidance in portfolio construction for investors who want
to eliminate exposure to the common risks and focus on exploiting the mispricing of
traded securities. Second, we address, in a unified manner, the question of “betas vs.
characteristics” in a statistical factor pricing model (a long-standing issue since Fama
and French (1993) and Daniel and Titman (1997)).> Our approach incorporates the
cross-sectional predictive power of asset characteristics for factor betas, as in Ferson
and Harvey (1997), Connor and Linton (2007), and Connor et al. (2012) for prespec-
ified factor models and Fan et al. (2016) and Kelly et al. (2018) for statistical factor
models. The “arbitrage” notion in our arbitrage portfolios is that we are constructing
portfolios that hedge out the systematic risk associated with firm characteristics. In
the limit, as the number of assets approaches infinity, the risk of the portfolio should
approach zero. We do not assume that there are necessarily arbitrage opportunities.
That is an empirical question. In the simulated economy above, there are no arbitrage
opportunities, and our procedure applied to those data correctly finds no evidence of
arbitrage opportunities. We are, ex ante, agnostic about whether the data support a
purely beta-based explanation, a purely alpha-based explanation, or a combination of
both. Our goal is to develop a procedure that does a good job disentangling these two
effects. Our simulation results suggest that it does. The the empirical results using
U.S. stock return data imply that the cross-sectional predictability is due to both beta-
and alpha-effects.

1.1 Related Literature

The early literature on risk-based determinants of cross-sectional expected returns is
closely linked to the Capital Asset Pricing Model (CAPM) of Treynor (1962, 1999),
Sharpe (1964), Lintner (1965), and Mossin (1966), the Intertemporal CAPM (ICAPM)
of Merton (1973), and the Arbitrage Pricing Theory (APT) of Ross (1976). There
is a large literature that relates observable firm characteristics to expected returns,
over and above those implied by extant asset pricing models. Early contributions to
this literature were made by Banz (1981) (market capitalization), Stattman (1980) and
Rosenberg et al. (1985) (book-to-market equity ratio), and Fama and French (1992) who

provide an early synthesis of findings across multiple characteristics. The explanatory

3See Chen et al. (2018) for the extension of Daniel and Titman (1997) on various characteristics.



power of firm characteristics has led to alternative specifications of asset pricing models
(e.g., Fama and French (1993, 1996)) and further testing of the ability of characteristics
to explain the cross section of returns beyond that implied by the expanded set of
asset pricing models. The recent meta study by Harvey et al. (2016) provides an
extensive overview of many of the variables (coined the “zoo of new factors” by Cochrane
(2011)) that the literature has produced and also raises important statistical concerns
related to multiple hypothesis testing. After these influential papers, numerous efforts
to systematically reduce the dimension of the cross sectional return predictors and have
been undertaken, e.g. Freyberger et al. (2019), Feng et al. (2019) or Han et al. (2018).

A large portion of the earlier empirical literature works at the portfolio level. That
is, rather than using individual assets to test models, researchers group assets into
portfolios and conduct tests on these portfolios. Due to concerns about masking pricing
errors by portfolio grouping, Connor and Korajczyk (1988) test the CAPM and a latent
factor version of the APT using a large cross section of individual assets. Their tests
assume that idiosyncratic correlations are non-zero only for firms in the same three-
digit SIC code. Gagliardini et al. (2016) and Chaieb et al. (2018) also stress that the
“pre-grouping” possibly masks important variation in alphas and betas and develop a
new methodology to test asset pricing models on individual assets. Kim and Skoulakis
(2018a,b) argue in a similar fashion and propose various asset pricing tests using large
cross-sectional individual stock data over a short time horizon. In particular, Kim and
Skoulakis (2018b) estimate the rewards of firm characteristics after controlling for the
risk of a given asset pricing model. While their interest is in the evaluation of a specific
asset pricing model, we provide a methodology to form arbitrage portfolios in a general,
latent factor structure of returns without the need to specify the factors, ex ante.

Fan et al. (2016) make a methodological contribution by bridging the gap between
purely statistical factor models and characteristic-based models. We use their contri-
bution as the basis for our analysis and extend the method to explicitly estimate and
test for possible characteristic-related mispricing. Kelly et al. (2017, 2018) develop and
apply a similar methodology, instrumented principal component analysis (IPCA). Our
work is closely related to that of Kelly et al. (2018), who also investigate the question of
whether characteristics contain information on risk loadings, mispricing, or both. They
conclude that firm-level characteristics’ ability to predict the cross section of returns is

due to their ability to predict the cross section of risk loadings rather than mispricing,



while we find that characteristics explain both risk and mispricing.

It is important to clarify the differences in economic questions between this paper
and Kelly et al. (2018). Our focus is on identifying and utilizing both the cross-sectional
and temporal relation of characteristics to risk or mispricing. Hence, we use the char-
acteristics at the beginning of each estimation sub-interval of short horizon (of one year
in our empirical work) to estimate the cross-sectional relation between alphas, betas,
and characteristics but allow the cross-sectional relation to vary across sub-intervals.
We apply the identified cross-sectional relation to the most recently observed charac-
teristics to construct our portfolio weights. In contrast, Kelly et al. (2018) allow the
characteristics to change period by period but hold the cross-sectional relation between
characteristics and either risk or alpha constant. The dynamics in our procedure are
primarily coming from changes in the cross-sectional relation between alphas, betas,
and characteristics, along with updating characteristics across sub-intervals of time.
The dynamics in Kelly et al. (2018) come from the time series of characteristics, hold-
ing the cross-sectional relation constant. Our procedure will tend to perform better
in situations where characteristics are relatively stable (e.g., market capitalization and
book-to-market equity) but whose relation to risk and alpha changes over time. This
would be the case if risk premia vary over time or if anomalies are arbitraged away
after discovery. The IPCA procedure will tend to perform better in situations where
characteristics have important short-term dynamics (e.g., short-term reversal and the
January seasonal) but whose relation to risk and alpha is stable over time. We also
apply IPCA to form out-of-sample arbitrage portfolios using data over a short time in-
terval in simulated economies and find the abnormal returns on the arbitrage portfolio
to be noisier than those from our procedure.*

The rest of the paper is organized as follows. In Section 2, we describe our large
cross-sectional economy and propose an estimator of arbitrage portfolio weights. In
Section 3, we simulate an economy in which asset risks match those in the U.S. equity
markets and examine the performance of our estimator of an arbitrage portfolio. The
estimator performs well with empirically relevant sample sizes. In Section 4, we apply
our methodology to a large cross section of individual stocks in the U.S. equity market

and provide evidence that our arbitrage portfolio indeed generates strong profitability

4This result does not mean that their method is deficient. Their asymptotic theory is based on
large T. However, we intentionally design the simulation setup for small T to justify our theoretical
results and empirical applications.



after controlling for commonly used risk factors. We also test for time trends in the
abnormal returns on the arbitrage portfolio. One would expect that data mining would
lead to returns that dissipate over time. While we find a slight negative time trend, it

is not economically significant.

2 The Model

N

and the return generating processes for those individual securities are stable for short

We assume that there exists a large number of securities indexed by ¢ = 1, ---

Y Y

blocks of time (e.g., dozens of months) ¢ = 1, --- | T. We allow the return generating
process to change across time periods. The return generating process of each individual
security follows a K-factor model in which the factors are unobservable, latent factors.

In particular, the excess return of i-th asset at time ¢ is generated by a factor model,
Ri,t :Oéi+,6£ft+€i’t, = 1, ,N and ¢t = 1, ,T, (21)

where B; = [Bi1 -+ Bix] is the (K x 1) factor loadings of the i-th asset, f; is the
(K x 1) systematic factor realization (plus risk premium) in period ¢, and e;; is the
zero-mean idiosyncratic residual return of asset ¢ at time ¢. Since our objective is
to extract possible mispricing from a large cross section of assets and construct an
arbitrage portfolio, we explicitly add a mispricing term, «;, to the return generating
process (2.1). Throughout, we use 0,,, 1,,, and 0,,,; denote the (m x 1) vectors of
zeros and ones and the (m x ) matrix of zeros, respectively. The return generating

process of (2.1) is expressed compactly in matrices:
R = al)} + BF' +E, (2.2)

where the (i,t) element of the (/N x T') matrix R is R;;, respectively, e is the (N x 1)
vector of [y - --ay]’, the i-th row of the (N x K) matrix B is 3], the t-th row of the
(T x K) matrix F is f/=[f1+ -+ fx:], and the (i,¢) element of the (N x T') matrix E
1S € 4.

Our estimator is an extension of the Projected Principal Components Analysis
(PPCA) approach of Fan et al. (2016). While they allow the factor loading matrix,

B, to be a nonparametric function of firm characteristics and estimate the model with



the restriction that mispricing is zero, we allow both the mispricing, «, and the sys-
tematic risk, B, to be functions of asset-specific characteristics. Let x; = [x;1 -+ @, L]'
be the (L x 1) vector of the characteristics associated with stock i. Define the (N x L)
matrix of X, the i-th row of which is x]. We assume the following structure for o and

B:

a=G,(X)+T,
B = Gy (X) + Iy,

where G, (X) : R¥*E — RN Gg(X) : RY*E — RV*Kand the (N x 1) vector,
[, and the (N x K) matrix, I, are cross-sectionally orthogonal to the characteristic
space of X. We call G, (X) the “mispricing function” and Gg (X) the “factor loading
function.” TI', and I's represent the sources of alpha and beta that are not related
to the characteristics, X. While the mispricing function, G, (X) and factor loading
function, G (X), can be consistently estimated in the large N/small T setting used
here, consistent estimates of I', and I's are not obtainable. Therefore, our procedure
does not attempt to exploit the gammas, just their orthogonality to the characteristics.
There are a number of ways in which one could incorporate non-linearity into the
mispricing and factor loading functions. We chose X to be a large set of characteristics,
possibly containing suitable polynomials of some underlying characteristics, X*. Hence,
we treat G, (X) and Gg (X) as linear functions of a large set of characteristics X. We

then rewrite the return generating process (2.2) as follows:
R=(G,(X)+Tu) 17+ (G (X) +Ts)F +E. (2.3)

First, we can learn about alpha and beta through G, (X) and G (X) even when
data are relatively infrequently observed (such as monthly) over short horizon (such as
a year) by instrumenting characteristics. This is a strong advantage over other factor
extraction methods requiring large time series or high frequency observations. Second,
because we set T' as a short horizon, the process in (2.3) can be treated as a local
approximation as an unconditional model of a conditional model over a long horizon

model.> Third, our rolling estimation of (2.3) enables us to study the temporal relation

5We thank Yuan Liao for pointing out this. Our approach also works under smooth transition of
X over a short horizon.



of characteristics to risk or mispricing. Many empirical approaches (e.g. Kelly et al.
(2018), Ferson and Harvey (1999), Ghysels (1998)) construct conditional model by
allowing the characteristics to change period-by-period but holding the cross-sectional
relation between characteristics and either risk or alpha constant, which is not suitable
for detecting anomalies that are arbitraged away after discovery.® By estimating (2.3)
over rolling-windows, we can learn about the dynamics of G, (X) and Gz (X). Lastly,
we do not need to necessarily have all important characteristics for risk and mispricing
(2.3). Because any information in the missing characteristics is captured by I', and I's,
our model already incorporates the possibility of misspecifying the set of characteristics.
Hence, if some important characteristics are missing, we may lose some precision but
will not generate spurious alpha.

Note that the Arbitrage Pricing Theory (APT, Ross (1976)) implies that the sum
of squared pricing errors is finite, so that %a’ a — 0. Hence, in an economy governed
by the APT, it follows that M — 0, because 0 < M < %a’a, since
Lo'a also involves %I‘;I‘a. Allowing for significant mispricing of assets implies the

N
cross-sectional average of the squared mispricing function G, (X) may be nonzero:

Assumption 1. As N — oo,

Ga (X)'Gq (X)
N

—6>0.

The above assumption specifies that the characteristics in X may contain information
about nontrivial levels of asset mispricing, a. It is beyond the scope of this paper to
examine the underlying cause of such a relation.” Assumption 1 does not imply that
characteristics capture all potential mispricing. Mispricing orthogonal to the charac-
teristics is reflected in I',. The main objective of this paper is to provide a method to
detect the relation between X and a while also allowing the characteristics to predict
differences in systematic risk across assets. Using the relation between X and both «
and B allows us to form portfolios that yield abnormal returns (if 6 > 0) while hedging
out the systematic risk associated with the firm characteristics.

The following are standard regularity conditions on the characteristics and residual

6Besides, Kothari and Shanken (1992) and Grundy and Martin (2001) theoretically verify that the
relation between some firm characteristics and risk are guaranteed to be dynamic.

"See Jagannathan and Wang (2007), Baker and Wurgler (2006), Stambaugh and Yuan (2016),
Frazzini and Pedersen (2014) among many for potential causes of mispricing.
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returns.

Assumption 2. As N — oo, it holds that
P

(i &NR 5 Vg and X’TX — Vx, where Vi and V x are positive definite matrices,
(it) —Gﬁ(])\([) = B 0y, —Gﬁ(? =2 Opnk, Xg“ 5 0p, —X],\?ﬁ 5 Orxk, —Gﬁ(]ff()E o

Oxxr
B D
and % — 0r«7.

Condition (i) simply states that the cross section of returns and characteristics are not
redundant but well-spread over individual stocks. Condition (ii) imposes the various
cross-sectional orthogonality conditions between the mispricing function, mispricing
function residuals, factor loading function, factor loading function residuals, and resid-
ual returns.

Lastly, we assume mild restrictions to separately identify G, (X) and Gg (X). To
ease notation, we define the (7' x T') matrix Jp = Iy — %1T1{F, which corresponds to

time-series demeaning.

Assumption 3. As N — oo, we assume

(i) w 5 Og,
(i1) —Gﬁ(x)];,Gﬁ(X) =Ix and

(111) FIrF' is a full rank (K x K) diagonal matriz with distinct diagonal elements.

Condition (i) restricts the mispricing function of G, (X) to be cross-sectionally or-
thogonal to the factor loading function of G (X). This assumption is without loss
of generality. If there is any correlation between G, (X) and Gg (X), the correlated
component can be assigned to the risk-based component reflected in Gz (X) by shifting
factors accordingly.® Conditions (ii) and (iii), are minor modifications of the commonly
assumed identification restrictions. Without this restriction, we cannot identify Gz (X)

separately because of the rotational indeterminacy of latent factor models. That is,
G; (X)FJr = G5 (X)H 'HFJ7 for any invertible matrix H.

2.1 Methodology

Our Projected-PCA procedure first projects demeaned returns onto the cross-sectional

firm-specific characteristics. The factor loading function is then estimated by applying

8For a similar restriction in literature, see equation (6) of Connor et al. (2012), who assume the
cross-sectional orthogonality between alpha and beta for identification.
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a standard PCA procedure to the projected returns. Fan et al. (2016) show that the
estimated factor loading function converges to the true factor loading function as the
cross-sectional sample increases, even for small time-series samples. This allows us to
implement the procedure using rolling blocks of data to estimate portfolio weights for
the next month. It also allows for time variation in factor risk premia and the extent
to which any given characteristic can predict abnormal returns. We extend the PPCA
estimator to not only estimate factors, but also the mispricing function, a case not
covered in Fan et al. (2016).

We achieve the goal of constructing an arbitrage portfolio in three steps. In the first
step, we demean returns and obtain an estimator of Gz (X) from applying Asymptotic
Principal Components (APC) to demeaned projected returns, (Connor and Korajczyk
(1986)). By demeaning the returns, we focus purely on systematic risk not on expected
returns or realized premiums. In the second step, we estimate G, (X) by regressing
(in the cross-section) average returns on the characteristic space orthogonal to the esti-
mated Gg (X) from the first step. Although the average returns contain both mispricing
and risk premiums from systematic risks, we extract the information about the mis-
pricing by imposing orthogonality to the systematic risks. In the third step, we use the
estimated G, (X) to construct an arbitrage portfolio.

We define the convergence of large dimensional matrices as follows.

Definition. For two (N x m) random matrices A and B with a fixed m, we say that
as N increases A % B if as N increases = (A — B)' (A — B) 5 0,

The first step of our procedure is the estimation of Gz (X). Recall that the observed
returns in (2.3) are driven both by Gg(X) and G, (X). We eliminate the effect of
G, (X), by demeaning the observed returns:

RJp = (Go (X) +To) 17J7 + (G (X) + Tp) F'Ip + EJp
(G (X)+Tp)FIr+EJr, (2.4)

where the last equality is from the property of 17.J7 = 14, (Iy — % 171%) = 1, — L1/, =
0’.. For further isolation of Gg(X), we project the demeaned returns of (2.4) on the
(linear) span of X by premultiplying by the projection matrix P = X (X'X)™' X,

12



Then, we get
R= PRJr =PGs (X)F'Jr + PI'sF'Jr + PEJr. (2.5)

Note that PGy (X) = Gg(X), since Gg (X) is already in the linear span of X. Due
to the orthogonality of I's and X and the limits in Assumption 2(ii) make PI's and
PE negligible for large N. Hence, it holds that R = PRJ; ~ Gj (X) F'Jr with large
N. Finally, as in Fan et al. (2016), we estimate G (X) by applying standard principal

component analysis to IA{

Theorem 2.1. Let (/iﬁ (X) denote the (N x K) matriz, the k-th column, of which is VN
times the eigenvector o RTR’ corresponding to the k-th largest eigenvalue of RTRI, where

R is given by (2.5). Under Assumptions 2 and 8, as N increases, G (X) 5 Gg (X) .

To provide some intuition for the result, recall that R converges (as N — oo ) to

G 3 (X) F'Jp. Therefore, B converges to \ﬁﬁ SsX) gy FG‘j(ﬁ) From Assumptions 3(ii),
w — Ik, so each column of \/N) can be treated as an eigenvector. Fur-

thermore, F'J7F is a diagonal matrix by Assumptions 3(iii), and hence, each diagonal
element of F'J7F can be interpreted as an eigenvalue. Resorting to these observations,
we recover Gg (X) through the eigen-decomposition of ﬁTﬁ, , as stated in 2.1.

Next, we proceed to estimate G, (X). Rather than demeaning R, as we did for the
estimation of Gg (X), we take the mean of R. by postmultiplying by the (7" x 1) vector
1179 From (2.3), the (N x 1) vector of average returns, 1R17 = R, is:

_ 1 1 1
R — (Ga (X) + Fa> T].lTlT + (Gﬁ (X) + F/g) TF,]_T + ?E/]_T
=Go(X)+ T+ (G5 (X)+Tp) F +E, (2.6)

Our objective is to extract G, (X) from R. Note that simply projecting R to the linear
span of X does not work because R contains not only G, (X) but G (X)F. That
is, projecting R to the linear span of X confounds the cross-sectional predictability of
returns due to mispricing with the predictability of returns due to factor risk premia.
Hence, we project R to the linear space spanned by X that is orthogonal to é/j (X).
The following theorem establishes that we can recover G, (X) with this approach.

9We can weight the time series mean by post-multiplying any (7' x 1) vector i such that 1. = 1.
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Theorem 2.2. Define G. (X) = Xé, where the (L x 1) vector of 0 is given by the

solution of the following constrained optimization problem:
6 = arg Irbin (R— XB)/ (R—X6) subject to (A}B (X)' X0 = 0,

where G‘g (X) is given by Theorem 2.1. Then, under Assumptions 2 and 3, as N
increases, Gg (X) 2 G (X) .

The problem in the above theorem is a conventional ordinary least square problem with
linear equality constraints and the closed form solution is easily obtained.!’
Alternatively, the estimator in Theorem 2.2 can be derived within the conventional

risk-adjusted approach as follows. Note that equation (2.7) can be rearranged as

R=Gs(X)F+ (G,(X)+T,+Ts+E) (2.7)

and
R-Gy(X)F =G, (X) + Ty + [5F + E) . (2.8)

Recall that our objective is to estimate G, (X). Equation (2.8) shows that we can
achieve this goal by regressing R — Gs (X) F on X. Because we do not directly observe
Gj (X) and F, we use CA}B (X) from Theorem 2.1 and estimate F by regressing R on
(/ig (X), motivated by the expression (2.7). The two approaches yield identical results.

Finally, we construct an arbitrage portfolio that optimally exploits any mispricing
information in characteristics. Consider first the true but unknown (and thus infeasible)
arbitrage portfolio, w = %Ga (X). Then, from (2.3), we find that the return of this

infeasible portfolio is given by

wR = (%Ga (X)' Gq (X) + %Ga (X)’Fa) 1
+ (%Ga (X) G (X) + %Ga (X)’rﬁ) F' + %Ga (X)' E.

From Assumptions 1-3, it is easy to verify that as N increases, +Gq (X) Gq (X) con-

10The result in Theorem 2.2 can be extended to incorporate a weighting matrix to increase (or
decrease) the importance of some stocks vs. others as follows. Consider a (N x N) diagonal matrix W,
the i-th diagonal element of which represents the weight for stock i. Then, we can estimate G, (X) by

G, (X) = X8Oy such that Oy = arg ming (R — X0)' W (R — X6) subject to G (X) WX6 = 0.
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verges to d > 0 and all other elements converge to zero such that wR 5 d1%.. The
following theorem states that the feasible portfolio, w = ﬁéa (X), achieves the same

asymptotic property.

Theorem 2.3. Define w = %CA}Q (X), where the (N x 1) vector of Gq (X) is given in

Theorem 2.2. Then, under Assumptions 1, 2 and 3 as N increases, WR o1/

The above theorem is the punchline of this paper: an investor can consistently recover
the arbitrage profits, should they exist, as the number of securities in the cross section
grows large. Our estimator does not require large 7. Hence, we can estimate w over
one sample and calculate out-of-sample returns over a subsequent sample, as illustrated

in Figure 1. The details of the out-of-sample applications are described in Section 4.

3 Simulation

In this section we analyze the properties of our estimator in simulations. The purpose
of this exercise is three-fold. First, we illustrate the behavior of our arbitrage portfolio
estimator in finite samples, similar in size, to those of the U.S. stock market.!! Second,
we explore the properties of the estimator if the number of factors is not known. Third,
we document that our estimator is reasonably robust against model misspecification,

in particular time-varying characteristics.

3.1 Setup

We first describe the set of characteristics used for simulation. For the matrix X, we
consider 61 characteristics, which are available at the end of 2010, the beginning of
calibration period. The set of characteristics includes past returns such as momentum
(returns from t — 12 to ¢ — 2) and short-term reversal (returns from t — 2 to t — 1),
the annual percentage change in total assets, return on operating assets, and operating
accruals (the full list is given in Table 2).

We generate returns according to four popular asset pricing models, the CAPM,

the Fama-French three-factor model (FF3), the Hou, Xue and Zhang four-factor model

1 This section focuses on simulation evidence regarding our procedure’s ability to accurately estimate
the arbitrage profits (if any) as established in Theorem 2.3. We also confirm the results of Theorems
2.1 and 2.2. These additional results are available upon requests.
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(HXZ4), and the Fama and French five-factor model (FF5). However, we depart from
those models by not restricting o to be zero. The number of factors in our estimator,
K, is set to the corresponding number in each asset pricing model, i.e., K =1 for the
CAPM, K = 3 for the FF3, etc. We explore the effects of selecting too few or too many
factors in later sections.

We calibrate ;, B;, and the variance of residual returns, o7, = E [5%] , of individ-
ual stocks for each of the four models from time series regression of excess returns of
individual stocks on a constant and the factor realizations over the 36-month period
from January 2011 to December 2013. For ease of interpretation, we normalize the
cross-sectional variation of a; so that the quantity ¢ in Assumption 1 corresponds to 1
basis point per month, as follows: we estimate @; from time series regression and fit the

cross-sectional relation &; = x;6, + 7a,;. We rescale a; = ka;, where k = \/%, and
[e% [e3

use the rescaled @; in the simulated returns (3.1). Note that 7, in the abgve Cross-
sectional relation, corresponds to the i-th element of I',,. Also, the calibrated betas are
significantly correlated with characteristics.

There are 2,458 individual stocks with full time series over the calibration sample
period. Because the consistency of our arbitrage portfolios is achieved with a large cross
section of stocks, we consider N = 1,000 and N = 2,000, which are sampled from the

2,458 individual stocks. In each repetition, we simulate returns from
R=al;Vi+BF +E (3.1)
— (X0aV5 +TaV3) + (XO4 + T F' +E,
where a and B are calibrated as in the above paragraph, F are resampled from the
realized factors over the 600-month sample from January 1967 to December 2016, and

E are drawn from a normal distribution with the calibrated o7, parameters as in the

above paragraph. We consider different cases of mispricing, i.e., § =0, 5, and 10.

3.2 Simulation Results
3.2.1 Correctly Specified Model
In our baseline scenario, we first investigate the performance of our estimator if we know

the correct number of factors. Figure 2 shows the results for using the Capital Asset
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Pricing Model (upper—left panel), the Fama-French three-factor model (upper-right
panel), the Fama-French five-factor model (lower—left panel) and the Hou, Xue, and
Zhang model (lower-right panel). Our findings are consistent across all models used
for calibration. The weights of the arbitrage portfolio, w, are estimated using the
returns over t = 1,--- , 12, and the return of the arbitrage portfolio is computed in the
following month, ¢t = 13, as in our empirical application. That is, we use Ty = 12 and
T = 13 in the setup of Figure 1. We report the mean of the out-of-sample return as
well as 95% confidence intervals for each level of 6 = 0,5, and 10 and N = 1,000 and
N = 2,000 from 10,000 repetitions. The confidence intervals are considerably narrower
with N = 2,000 than those with N = 1,000. This result is empirically relevant because
we can obtain a cross section of this size in the U.S. stock market. As expected, when
0 = 0, or there do not exist any arbitrage opportunities, our arbitrage portfolio yields
zero returns on average. Recall that «; is rescaled so that w — 1b.p./month.

Hence, 3.1 implies that the arbitrage portfolio generates asymptotic arbitrage profits
(Ga(X)V3)' (Ga(X)V3)
N

of 6 = limy_soo . In fact, we observe that, when the simulation
parameters are 6 = 0,5, or 10, the average of arbitrage portfolio returns corresponds
to the target size of § b.p./month, suggesting that our arbitrage portfolio actually

generates the expected level of arbitrage profits.

3.2.2 Unknown Number of Factors

In the previous section, we used the true number of factors in extracting factor loadings
from the projected returns. In application, we do not know the correct number of
factors. Estimating the number of factors is a long-standing problem in panel-data
analysis for which many tests have been proposed, e.g., Connor and Korajczyk (1993),
Bai and Ng (2002) or Ahn and Horenstein (2013), and is a nontrivial task as emphasized
in Brown (1989). We therefore examine the effect of selecting one too few or one too
many factors. Figure 3 reports the results when we set the number of extracted factors
to be one more than the true number of factors. We find that the arbitrage portfolio’s
performance in Figure 3 is almost identical to those in Figure 2, where we set the
number of extracted factors to be the number of true factors. Hence, we conclude
that extracting one additional factor more than the true number does not seem to
harm the performance of our arbitrage portfolios materially. This result is not too

surprising because our arbitrage portfolio weights still achieve orthogonality to the
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systematic factors. Obviously, extracting many more extraneous factors will likely lead
to imprecision in the estimates.

In contrast, if the number of extracted factors is less than the number of true factors,
our methodology does not guarantee that the arbitrage portfolio weights are orthogonal
to betas with respect to systematic factors. Figure 4 reports the performance of our
arbitrage portfolios when we extract one less factor than the underlying model for the
CAPM, FF3, HXZ4, and FF5. We find that the average returns are far off from the
target level and the portfolio returns are much more volatile (presumably due to the
exposure to systematic factors) relative to the case of overestimation (Figure 3 (too
many) vs Figure 4 (too few)). As a a guideline for empirical analyses, we should
therefore try to select slightly too many rather than too few factors, as the effects of
selecting too few are far more severe than those of selecting too many. In the empirical

analysis, we will explore the variation of the results as we change the number of factors.

3.2.3 Time-Varying Characteristics

The theory developed so far assumes that characteristics do not vary over time. In
this section, we explore how our estimator will behave if this assumption is violated.
We assume that each characteristic follows an AR(1) process. We find the AR(1)
parameters of each characteristic as follows. For each characteristic and each firm, we
have 36 observations of the characteristic over our calibration period. We estimate the
AR(1) autoregressive coefficient over this time period and the variance of the residuals
for each firm. We then determine the average AR(1) coefficient as the average across
firms and also determine the variance of the residuals (for each characteristic) in the
same way.

Across simulations, we fix the initial characteristic over the calibration period as X.
Let x;. and z; ., denote the (7, c) element of X and X, respectively. Then, we generate
Xy with @ cp = Tie + pe (Ties — Tie) + 0cEiy, Where p. and o2 are the estimated AR(1)
coefficient and variance of residuals of a certain characteristic ¢, and ¢;; is drawn from
N (0,1) as i.i.d over i and ¢t. We then generate Ry, the ¢-th column of R, as follows:

R; = a,_1V0 + B, _f, + Eq,
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where a1 = X;_10,, B;_1 = X; 103 + I'; and E; is the ¢-th column of E.*

Figure 5 reports the performance of our arbitrage portfolios when the returns are
generated with the time-varying alpha ;1 = X;_10, and the time-varying beta B;_; =
X¢-1©p + I'g, induced by time-varying characteristics. We find that our methodology

is robust to the empirically relevant dynamics in the characteristics.

3.2.4 Further Robustness Checks

To further investigate the robustness of our estimator, we introduce correlated residuals.
In each simulation, we randomly construct 50 clusters of equal numbers of stocks and
generate the residual shocks so that the residual correlation between stocks in the
same cluster is 0.1 and that between stocks in different clusters is zero. We calibrate
the within-cluster residual correlation using the average correlation of residual shocks
within a same industry relative to commonly used asset pricing models such as CAPM
or FF3. The results are reported in Figure A.1 in the online appendix.

We also repeat the analysis using a different time period for calibration. In an al-
ternative calibration, we use the data from the beginning of 2006 through 2008. This
time period contains the extremely volatile second half of 2008. We report these results
in the online Appendix, in Figure A.2. In addition, we provide simulation evidence of
the robustness of our method to missing characteristics. To this end, in each repetition,
we use 61 characteristics for simulating returns but drop randomly picked ten charac-
teristics for computing w. We plot the results in Figure A.3 of the online appendix.
As an additional test, we also re-run the simulations and randomly select firms with
replacement in each iteration, thereby illustrating the robustness to a slightly different
composition of the panel. Overall, the performance of the estimator is very stable across

all these modifications.

4 Empirical Application

In this section we discuss the set of characteristics and the application of our method-

ology to U.S. stock market data.

12We obtain 0, and ©p by regressing the calibrated @ and B on X. Also, we find I's from I'g =
B - X0O;.
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4.1 Data

The data are the same as in Freyberger et al. (2019); we use stock return data from
the Center for Research in Security Prices (CRSP) monthly file. As is common in
the literature, we limit the analysis to U.S. firms’ common equity, which is trading
on NYSE, Amex or Nasdaq. Accounting data are obtained from Compustat. As in
Freyberger et al. (2019), of year ¢ + 1, predicting returns from the beginning of July of
year ¢ until the end June of year t+1. Table 2 provides an overview of the characteristics
used for estimation of the mispricing function and the factor loading function.

To alleviate potential concerns about survivorship bias, which may arise because of
backfilling, we require that a firm have a least two years of data in Compustat. Our
sample period is from 1965 through 2014. For the full sample, we have approximately

1.6 million firm/month observations in our analysis.!?

4.2 Estimation

We initially assume that the factor loading function and the mispricing function are
linear in the characteristics.!*

Figure 1 illustrates how we implement the arbitrage portfolio in an out-of-sample
manner. We estimate w with the returns over ¢ = 1,---,12, and the return of the
arbitrage portfolio is measured in the following month, ¢ = 13. We call the first pe-
riod t = 1,---,12 the estimation period and the second period ¢ = 13 the holding
period (below we also report results for alternative lengths for both the estimation and
the holding periods). Let Xy and X;, denote the characteristics at the beginning of
estimation and holding periods, respectively. For example, we first use X, to obtain
the projected and demeaned return of R over the estimation period corresponding to
Px,RJ12 in (2.5) (from a panel regression using 12 months from January 1967 to De-
cember 1967). The t-th column of the (N x 12) matrix R is the demeaned projected
return for the ¢-th month. Then we compute the N x N matrix RR' ;0 the first K

N
eigenvectors of the matrix. We then project the average returns onto characteristics

13The appendix in Freyberger et al. (2019) contains a detailed description of the construction of the
data as well as numerous references to papers that have employed these characteristics in empirical
applications.

M Note that our methodology allows for (parametric) nonlinearities, which we explore in Section 5.3.
However, the results from employing these polynomial expansions are very similar to the linear case
and are, therefore, relegated to the appendix.
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subject to orthogonality to the estimated factor loadings as in Theorem 2.2 to obtain
6. In computing the arbitrage portfolio weights as in Theorem 2.3 for the following
month of January 1968, we update characteristics with X5 in computing w such that
w = %Xlgé\. We repeat this process month by month until June 2014. In order to
make the results comparable in scale to common equity factors, we scale the portfolio

weights so that the in-sample standard deviation is 20% per year.

4.3 Performance of the Arbitrage Portfolio

In this section we document the out-of-sample performance of the arbitrage portfolio.
Table 3 shows the summary statistics for returns of the arbitrage portfolio for different
numbers of eigenvectors. From Table 3 we see that the returns and Sharpe ratios
increase with the number of eigenvectors until about six eigenvectors. Employing more
than six eigenvectors does not seem to materially harm the properties of the portfolio,
but there also does not seem to be an improvement in any performance metric. Overall,
the Sharpe ratios are very high, ranging from 1.35 to 1.75 . The increase in Sharpe ratios
with increasing number of eigenvectors is driven by increasing means, not decreasing
standard deviations, because the standard deviation is always normalized to be 20%
in-sample. The out-of-sample standard deviation is close to the in-sample standard
deviation. The table also displays the maximum drawdown, which ranges between
20.1% and 38.5%. These drawdown numbers are relatively moderate compared to the
maximum drawdowns of common factors over the same time period. The four factors
in Fama-French-Carhart model have maximum drawdowns of 55.71% (market factor),
52.78% (size factor), 44.68% (value factor) and 57.51% (momentum factor) over our
sample period. In addition, skewness, kurtosis, and the best and worst month are also
reported in Table 3.

The large Sharpe ratios of Table 3 could be driven by high exposures to common
risk factors and therefore not be related to possible mispricing. Therefore, aiming
to understand better the abnormal performance of the arbitrage portfolio, we run a
time-series regression of the arbitrage portfolio’s returns onto common risk factors.!®

In Tables 4 (one estimated factor) and 5 (six estimated factors), we report the risk-

15We are grateful to Kenneth French for making the factors involved in the CAPM, FF3, and FF5
models available on his website. We also thank Chen Xue for providing the data for the Hou et al.
(2015) four-factor model.
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adjusted returns of the arbitrage portfolio with respect to the CAPM (column 1), the
Fama and French (1992) three-factor model (column 2), the Fama-French three-factor
model augmented with the Carhart (1997) momentum factor (column 3), the Fama
and French (2015) five-factor model (column 4), the Fama-French five-factor model
augmented with the momentum factor (column 5), the Hou et al. (2015) four-factor
model (column 6) and the HXZ model augmented with the momentum factor (column
7).

We limit our main discussion to the cases in which we extract one factor (one eigen-
vector) and six factors (six eigenvectors). The results for all other cases are contained in
the online appendix. In Table 4 with one eigenvector, we can see that the alpha (or the
intercept in the time-series regression) is fairly consistent across various asset pricing
models. Although our arbitrage portfolio has significant exposures to some factors, the
adjusted R? is fairly low with the minimum of 0.00 and the maximum of 0.22. We find
consistent results when we increase the number of eigenvectors except that the alpha
tends to increase. For example, the CAPM alpha of our arbitrage portfolio with six
eigenvectors is 2.63 %/month (See Table 4), far higher than that with one eigenvector
1.79 %/month (See Table 5). We illustrate the relation between out-of-sample alpha
and the number of eigenvectors used in the estimator in Figure 6. We can see that
the alpha has a hump shape and decreases after approximately seveneigenvectors. We
attribute the deterioration to the overfitting of systematic risks.

Figure 7 summarizes the correlation of the arbitrage portfolios (using 1 through
10 eigenvectors) with common risk factors. If we look at the correlation between the
arbitrage portfolios, we see that the correlation between the arbitrage portfolio with
one eigenvector and the other arbitrage portfolios drops as the number of eigenvectors
increases, albeit it never drops below 0.8. If we compare the correlation of the arbitrage
portfolios with five or more eigenvectors, we see that the correlation is consistently
high, suggesting that the portfolio does not change very much after we extract five
common factors. The correlation between the arbitrage portfolios and the common
factors is relatively low except for the size factor, which again is consistent with the
factor regressions in Tables 4 and 5 and the additional factor regressions in the online

appendix.
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4.4 Properties of the Arbitrage Portfolio

In this section, we explore the properties of the arbitrage portfolio more deeply. In
particular, we open the “black box” and study the firm characteristics of the companies
in the arbitrage portfolio. Furthermore, we discuss the time-series properties of the
returns, the properties of the portfolio weights, as well as possible diminishing excess

returns over time.

4.4.1 Time-Series Properties

To develop further intuition about the performance of the arbitrage portfolio, we explore
its time-series properties more closely. In Figure 8 we plot the cumulative return. It is
noteworthy, that the arbitrage portfolio did not have a negative return (for a full year)
during the recent financial crises. Overall, the returns are positive in 42 out of 44 years.
Also, the arbitrage portfolio does not have significantly different returns during NBER
recessions versus other periods. With a simple regression of the portfolio return on a
constant and an NBER recession indicator, i.e. 7, = a + b x NBER; + ¢;, we obtain
point estimates of @ = 2.523 (significant at the 1% level) and b= 0.539, with a p-value
of 0.40. This strongly suggests that the portfolio returns are not systematically related
to the business cycle.

In addition, we also explore whether the excess returns of the arbitrage portfolio
diminish systematically over time. We test for a time trend, by estimating the following

specification

r=a+bxt +¢e. (4.1)

We estimate the model using non-linear least squares, the point estimates are @ =
5.27, b= —0.127, ¥ = 0.5501.16 Only the intercept is significant at coventional levels,
with a p-value of less than 0.01.}7 A possibly undesirable feature of this specification
is that it does not rule out arbitrarily negative returns in the limit. However, it seems
plausible to restrict the model to only allow returns to be zero in the limit. One easy
way to achieve this is restrict the intercept to be zero and require a positive value for

b in this case, we estimate b = 10.18 and 5 = —0.262. This specification suggests a

16Note that this specification contains the linear time trend, 7, = a + b x t + &; as a special case.
17p-values of b and 4 are 0.77 and 0.25, respectively.
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mild decay in excess returns and predicts the returns to reach less than one percent
per month in approximately 7000 periods. We plot the trend estimated from this
specification in Figure 9. Both specifications confirm that the excess returns appear
not to diminish systematically over time. This finding is important in the context of the
work of McLean and Pontiff (2016) and Linnainmaa and Roberts (2018), who document
that many anomalies have become significantly weaker post publication. While it is
possible that data snooping will lead to reduced future performance of the arbitrage
portfolio, many of the predictive characteristics are the result of research done decades
ago. We conclude that the significant average excess returns are at least partially due

to mispricing of assets.

4.4.2 Firm Characteristics

In Figure 10 we show a comparison of the long and short side for nine well-known
characteristics for the arbitrage portfolio using six eigenvectors. All of the characteris-
tics in Figure 10 are well-known cross-sectional return predictors: the book-to-market
ratio (Fama and French (1992)), the debt-to-price ratio (Litzenberger and Ramaswamy
(1979)), market equity (often referred to as “size,” e.g., Banz (1981)), profitability (re-
cently reexamined by Ball et al. (2015)), investment (Fama and French (2015)), operat-
ing accruals (Sloan (1996)), last month’s turnover (Datar et al. (1998)), and short-term
reversal as well as (standard) momentum, both of which are documented in Jegadeesh
and Titman (1993)).

From Figure 10 we can see that the arbitrage portfolio is typically long smaller firms
and short larger firms, which is consistent with the positive loading on the size factor
in Table A.4. Another clear pattern emerging from the figure is that the arbitrage
portfolio is typically long firms with low returns in the month preceding the portfolio
formation. It is, however, very remarkable that there is no noticeable pattern for
book-to-market, momentum, and investment, which is again consistent with small and
insignificant loadings on the corresponding factors in Table A.4. Interestingly, the
pattern for profitability is not very clear in the figure, but the portfolio has a significant
negative loading on the “robust minus weak” factor in Table A.4. We show the cross-
sectional comparison for all 61 characteristics in Figure A.4 in the online Appendix.

To gain more intuition about the relationship between characteristics and systematic

risk on the one hand and mispricing on the other hand, we project the estimated factor
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loadings (ég (X)) and the estimated mispricing function (G4(X)) onto the character-
istic in each period. We normalize the coefficients cross-sectionally so that the highest
coefficient always receives a value of one to ensure that we can compare the coefficients
over time. Figure 11 shows the projection results for systematic risk and Figure 12
shows the corresponding results for mispricing. From Figure 11 we can see there ap-
pears to be a relatively stable relationship between some groups of characteristics (e.g.
past returns, total volatility, idiosyncratic volatility and size related variables (LME and
AT)) and factor loadings. However, from Figure 12 we can see that one few characteris-
tics are consistently related to mispricing (size and total assets). Other characteristics
are only related to mispricing for few periods “on-and-oft”. While there are clear limits
to “eyeball econometrics”, the results in Figure 12 underscore the importance of our

time-varying approach.

4.4.3 Portfolio Weights

The theory does not impose any limits or discipline on the portfolio weights of the
arbitrage portfolio. In the implementation, we scale the portfolio weights such that
the in-sample standard deviation of the arbitrage portfolio is 20% annualized. In the
implementation, we de-mean the characteristics so that the resulting portfolio weights

4

of the arbitrage portfolio sum to zero, it therefore by construction a “zero-investment
portfolio.” However, we do not impose any constraints on the largest (smallest) position
within the portfolio. It is therefore a potential concern that the portfolio allocates an
unrealistically large amount into individual assets. In Figure 13, we plot the median,
minimum, maximum as well as the 5% and 95% quantile of the weights in each month
over the sample period from January 1968 to June 2014. The largest weight (in absolute
value) over the entire sample is approximately 5.1%. In later parts of the sample, when
the number of stocks is larger, the weights are considerably smaller, with the largest

weights often being less than 1% in absolute value.

5 Robustness

The empirical implementation of the arbitrage portfolio in Section 4 naturally depends
on several choices, such as the number of estimated factors (eigenvectors) or the length

of the estimation window. It is therefore important to demonstrate that the results are
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robust to many of these choices, In the following, we relax many of these choices and

show that our results do not depend crucially on these implementation choices.

5.1 Estimation Windows

In our main specification, we use 12 months and then roll the estimation window forward
by one month. Since our theoretical results are derived in a local in time setting,
i.e. T is fixed, the choice of T should not drive the result. To illustrate this, we re-
estimate our main analysis with 24 and 36 months as the estimation window. Tables
A.9 and A.10 show the general performance statistics and estimated alphas (against the
standard factor models) for the arbitrage portfolio constructed using only 24 months
as an estimation window. Overall, the results are quite similar to our baseline of a 12
months window, althoughslightly worse than the base case. If we use an estimation
window of 36 months, the results are again similar to the baseline of 12, see Tables
A.11 and A.12.

5.2 Holding Periods

The heatmap for the mispricing component in Figure 12 shows the loadings on the dif-
ferent characteristics change from period to period. It is therefore natural to investigate
if the performance of the arbitrage portfolio deteriorates strongly if we do not rebal-
ance the portfolio each month. In this robustness check we therefore hold the arbitrage
portfolio for 2, 3, 6 and 12 months without rebalancing and analyze its performance.'®
The Sharpe ratios from this exercise are shown in Table A.13 . The results show that
timely information is crucial for creating a arbitrage portfolio and that mispricing ap-
pears to be rather short lived. However, even if we only rebalance every second or
every third month, the arbitrage portfolio still achieves annualized Sharpe ratios close
to one. However, if we rebalance only once per year, the Sharpe ratio of the arbitrage
portfolio is in the same order as the Sharpe ratio of the U.S. stock market overall and

no abnormal performance can be obtained.

8Note that this approach does not yield same portfolio weights for each month in the holding
periods. Although we do not trade over the holding period, the portfolio weights change as the value
of securities evolve.
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5.3 Nonlinear Estimation

In Section 2, we have not taken a parametric stand on the functional form of G (X).
In the application, we estimate G (X) as a linear function. In this section, we briefly
outline one possible way to incorporate nonlinearities into G (X). In Fan et al. (2016),
G (X) is approximated by a series expansion in a nonparametric additive setting. The
assumption of additivity (G (X) = > g (z1) + g (x2) + ... + g (x1)) has the appealing
property that G (X) can be estimated without the so-called “curse of dimensionality”
because the rate of convergence does not depend on the dimension of X, so that it can
be estimated with many characteristics. However, it introduces a complication in the
asymptotic theory, namely that the series expansion also grows with the cross-sectional
sample size. Since our interest is primarily applied and to avoid these technicalities, we
assume that Gg (X) can be well approximated by a fixed order polynomial expansion.
In the application we will use Legendre polynomials to incorporate nonlinearities in the
estimation of Gg (X).!

In Table A.15 we show alphas of the arbitrage portfolio against various factor mod-
els when we use fourth-order Legendre polynomials in the estimation of Gg (X). The
alphas are slightly smaller than in the linear specification but mostly still in excess of
one percent per month and strongly statistically significant. This suggests that allow-
ing nonlinearities enables our method to estimate systematic factors more effectively.
Overall, however, the results of the higher-order expansions are consistent with the
the linear specification and do not erode the arbitrage profits. However, they leave

interesting avenues for future research.

5.4 Small Firms

The analysis in Section 4.4.2 suggests that the arbitrage portfolio tends to be long
smaller firms and short larger firms. It is therefore important to understand if the
results are materially driven by micro-cap stocks that are likely very illiquid. We there-
fore exclude all stocks below the 10% NYSE size quantile. Discarding firms below the
10% NYSE quantile eliminates much more than 10% of all firms, since the average
NYSE firm is larger than the after firm listed on NASDAQ. Excluding these firms re-

9Legendre polynomials are frequently used in econometrics to approximate unknown functions and
fall into the more general class of “orthogonal polynomials.” We refer to Bierens’s (2014) handbook
chapter for a deep theoretical treatment of orthogonal polynomials.
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duces the sample size on average by 38% per month, i.e. the total sample size shrinks
from approximately 1.6 million observations to roughly 900,000 observations. We then
re-compute the arbitrage portfolio using an estimation period of 12 months as in the
baseline analysis. Tables A.16 and A.17 show portfolio performance measures and esti-
mated alphas against various factor model. The performance does not weaken strongly
relative to using all available firms and even excluding very small firms leads to portfo-
lios with alphas in excess of 1% per month and annualized Sharpe ratios greater than
1, thereby reinforcing our earlier finding that characteristics contain information about

mispricing.

5.5 Alternative Factor Models

In the previous sections, we relied on the “classic” risk factors suggested in the literature.
While it is impossible to conduct an exhaustive analysis of all possible risk factors
suggested throughout the empirical asset pricing literature, it is important to analyze
the robustness of our results to “alternative” asset pricing factors, such as the liquidity
factor of Pastor and Stambaugh (2003) or the betting-against-beta factor of Frazzini and
Pedersen (2014).2° Lastly, since we are dealing with an arbitrage or mispricing portfolio,
we also employ the “mispricing factors” of Stambaugh and Yuan (2016).2! Table A.18
shows the estimated alphas and factor exposures for these additional factor models for
our baseline arbitrage portfolio (12 estimation months and six estimated factors). From
Table A.18 we can see that the arbitrage portfolio still has high and strongly significant
alpha’s. Moreover, the portfolio is only marginally exposed to the “mispricing” factor
of Stambaugh and Yuan (2016) . The exposure to the other “alternative” factors is

insignificant.

6 Conclusion

We propose new methodology to simultaneously recover conditional factor realizations
(returns on “smart-beta” portfolios), estimate conditional factor loadings, estimate con-

ditional alphas using firm-level characteristics, and construct arbitrage portfolios. Our

20The betting-against-beta factor was obtained from the AQR factor database.
21'We are grateful to Robert Stambaugh for making the illiquidity factor and the mispricing factors
available on his website.
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methodology extends the method of Projected Principal Components of Fan et al.
(2016) to separately identify risk and mispricing. In an extensive simulation study, we
show that our methodology works well in a finite sample and is also robust against var-
ious forms of misspecification, in particular, it does not break down with time-varying
or some missing characteristics. The methodology only requires a large cross section
and can accommodate a short time span.

In the empirical application in the CRSP/Compustat panel from 1968 to 2014, we
find that characteristics carry significant information about mispricing despite giving
maximal explanatory power to the statistical factor model. Alphas against popular
factor models range between 1.5% and almost 3% per month.

While we do find significant abnormal returns for the arbitrage portfolio against
popular existing factors, our main contribution is the development of new methodol-
ogy that separately identifies alpha and beta and thereby correctly parses the ability
of firm characteristics to explain the cross-section of returns into risk and mispricing
components. This is important even if we had found no evidence of mispricing since

some common techniques can lead to incorrect inferences.
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A  Proofs

Let P denote the projection matrix X (X'X) " X.

Lemma A.1. Let Y be a (N xT) matriz. Assume that the first K eigenvalues of Y'Y
are distinct and strictly positive. Define F and D such that the k-th column of the (N x K)
matriz F is the eigenvector of Y'Y corresponding to the k-th largest eigenvalue of Y'Y and
the k-th diagonal element of the (K x K) diagonal matriz D is the k-th largest eigenvalue
of Y'Y. Define the (N x K) matriz A such that the k-th column of A is the eigenvector
of YY' corresponding to the k-th largest eigenvalue of YY'. Let A = YF (f"f‘>_1, where
F = FDY2. Then, it holds that

A=A

Proof The k-th largest eigenvalue of Y'Y is the k-th largest eigenvalue of YY” (see Greene
(2008) page 970). Hence, A is identified by the following two conditions:

)

)

i) AA =1Ig
i) A'Y

Y'A = D.

)

Using eigen-decomposition, we express the (7' x T') matrix Y'Y as QVQ':
Y'Y =QVQ. (A.1)

Note that the (T' x K) matrix made out of the first K columns of Q is F and that the first

K diagonal elements of V correspond to the diagonal elements of D :
F=Q[Ix Ogyr_x)) and D = [Ix Oy iz )] V [Ix Opxirro)) - (A.2)
We prove the lemma by showing that A satisfies the two conditions of i) and ii) in the

—~ ~ ~ ~ [~ ~\ —1 ~ [~ ~\ —1 —~
above when we set A = A. Because A = YF (F'F) —YF (F'F) D05 — YFD 05, it
follows that

K/K — D—0.5:/E\1/Y/Y:/F\D—O.5 — D—0.5 [IK OKx(T—K)] Q/QVQ,Q [IK OKx(T—K)]/D_Oﬁ
=D [IK OKX(T—K)] Vv [IK OKX(T_K)]/Dfo"5 =D DD %5 = Ig, (A.3)
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where the second and fourth equalities are from equation (A.1) and equation (A.2), and
that

K/YY/K — D—O.5f\/Y/YY/Yf\D—O.5 — D—0.5f\/Qv2Q/f\D—U.5
=D [Ix Ok s (T—r)] QQV*QQ [Ix OKx(T—K)]/D_0'5
=D %% [Ix Ogxir_i)] V? [Ix Oxxr—i)) D™°

2
=D ([IK Ok (r—x)| V [Ix OKx(T—K)]/> D%

_ D70.5D2D70.5 — D7 (A4)

where the second equality is from equation (A.1) and the third and sixth equalities are
from equation (A.2). Finally, the two equalities of equations (A.3) and (A.4) prove the

lemma. O

Lemma A.2. Let ég (X) denote the (N x K) matriz, the k-th column of which is N
times the eigenvector o RTRI corresponding to the first k-th eigenvalue o RTR,,

~ ~ ~~ [~ ~\—1 ~ ~
R is given by (2.5) as in Theorem 2.1. Define Gz (X) = RF <F’F) , where F = FD/2;

where

the k-th column of the (T x K) matriz F is the etgenvector of R/TR corresponding to the k-th
largest eigenvalue of %; and the k-th element of the (K x K) diagonal matriz D is the k-th
largest eigenvalue of %. Then, it holds that

(i) Gg (X) = Gg (X)

(ii) PGy (X) = G (X).

Proof Note that % = (%) (%)l and ﬁ&ﬁ = (%),<%> and that éﬁ (X) =

~ _ s~ ~\—1
VN \/%F (F’ F) . Hence, (i) directly follows from Lemma A.1.
~ ~ [~ ~\ —1 ~ [~ ~\ —1 ~
We turn to (ii). Because PG (X) = PPRI;F (F’F) — PRJ,F (F’F) = Gy (X),

(ii) is true from (i). This completes the proof of the lemma. O

Lemma A.2 shows there are two equivalent methods to estimate the factor loading matrix.

A direct approach is to calculate ég (X) by calculating the eigenvectors of the N x N matrix
% (which is not feasible for very large cross-sectional samples). The second approach is to
first estimate the factors by asymptotic principal components (Connor and Korajczyk (1986))

using the eigenvectors of the much smaller K x K matrix LNR and then to run regressions of

returns on the factors to estimate the factor loadings é/g (X).

Lemma A.3. Under Assumptions 2 and 3(ii), it holds that as N increases, % 2 JrFF 7.
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Proof From (2.5), we have that
R = I+l + 13,

where ll = PGﬁ (X) F/JT, lg = PPQF,JT and lg = PEJT. Hence,

3

Note that

1 Gs(X) G (X
il = J7F ( s ( )N s ( )> F'Jp = J;FFJ; (A.6)

from Assumption 3(ii) and that

1 Gs(X)'T
NZ/IZQ =JrF (W) F/JT 2) JTFOKXKF/JT = 07«1 (A7)

from Assumption 2(ii) and that

Gs (X)'E

1 /
—1I'ls = J+F

) Jr B IrFOgurIr = Opur (A.8)

from Assumption 2(ii) and that

1 X\ /x/x\ ! /XT B
Nlél? — J;F <fv> ( ~ ) < Nﬁ> F'Jr 5 JrFO0k« [ V' 0px F'Ip = Opyr

(A.9)

from Assumptions 2(i) and 2(ii) and that

1 X\ /X'x\ ! /X'E _
Nllglg = JTF (ﬁ) ( > ( > JT ﬁ) JTOTXLVXIOLxTJT = 0T><T (A.IO)

N N N

from Assumptions 2(i) and 2(ii) and that

1 E'X\ /X'X\ ! /X'E B
Nzgzg :JT< ~ > ( ~ ) ( N )JT B I707% LV 0L %I T = Orsr (A.11)

from Assumptions 2(i) and 2(ii).
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EN

. . . . 88
Finally, plugging the results of equations (A.6)-(A.11) into (A.5), we have that =

JrFF'Jr, completing the proof of the lemma. O

Proof of Theorem 2.1 The following seven steps complete the proof of G 3 (X) Eie! 5(X).
Step 1. F5 JrF (FJIrF)” 0-5. Recall that R R 2 JrFF'Jr from Lemma A.3 and F is

the (T x K) matrix, each column of which is an elgenvector of %

Note that <JTF (F’JTF)_0'5>/ (JTF (F’JTF)_O'5) — Iy and that
(3,7 (F’JTF)_0'5>/JTFF’JT (37F (FarF) %) = FarF,

which is a diagonal matrix from Assumption 3(iii). Thus, J7F (F'J7F)"*? is the (T x K)
matrix, each column of which is an eigenvector of J7FF'J7. Due to the continuity of eigen-
decomposition, it follows that F 2 JF (F'JpF) %0

Step 2. D 2 FIF: In Step 1, we show that F'JrF is the diagonal matrix whose
diagonal elements are eigenvalues of J7FF'Jr. Due to the continuity of eigendecomposition,
it follows that D 5 F'J7F.

Step 3. F % J;F: From Steps 1 and 2, F = FD% % J,F (F/J;F) 5 (F I F)*5 =
JrF.

Step 4. F'J7F (F'ﬁ)fl 2 Ig: From Step 3, F'J-F (1?“’1?)71 2R JrF (FIrF) ! = 1.

Step 5 ég (X) = PRI,F (ﬁ’f‘>_1 % Gg (X): Using the expression of PRIy in (2.5),
we find that

Gy (X) = Gy (X) F'IrF (FF) P (ﬁ’ﬁ>_1 +PEJ,F (17“’1?“)_1 :

which gives

Gs (X) — Gg (X) = m1 +ma + m3,

where

1

— Gy (X ( (F’F) - IK> ,
= PT,FIF (FF)

—1
ms = PEJ,F (F F
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Hence,

(G (%) - G5 (%) (G5 (%)~ G5 (X)) = »> i (A.12)
i=1 j=1
Note that
ot = (P (F) o) S PIE ) (m () 1)
B (I —Ig) I (I — Ix) = Ogui (A.13)

from Step 4 and Assumption 3(ii) and that

1 ~ [~ 1 "Gz (X)'T ~ f~ 1
—mlmy = (F'I;F (F’F) 1) G Dy i (F’F)
N N

B (Ix —Ig) Oxrl = O ui (A.14)

from Step 4 and Assumption 2(ii) and that

1 ~ [~ =\ 1 "Gs(X)VE . ~ /~~\"1
~mimg = <F’JTF (F’F> - IK> 5(N)JTF (F’F)
B (I — Ix) O x7rI7F (FI7F) " = Opcnsc (A.15)
from Step 4 and Assumption 2(ii) and that
SN . X X\l /X SN SUUN |
%mémg - (F’F) F I, F (f\[) (XNX> ( Nﬂ> F'JF (F’F)

IR0k« LV 0rx il = Ok i (A.16)

from Step 4 and Assumptions 2(i) and 2(ii) and that

i / (ww) e FIBX X'X\ 7 (X'E = () !
Nm2m3—<FF) FJTF< = = ~ JTF(FF>

2 Ik 0k« V' 0LxrI7F (FI7F) ™! = 0gie (A.17)

from Step 4 and Assumption 2(i) and 2(iii) and that

| e E'X)\ /X'X\ ! /X'E ~<~,~)71
Nm3m3—<FF) FJT(N = ) 31F (F'F

L (F'37F) T FI707. V00 drF (F'I7F) ' = Ok (A.18)
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Finally, plugging the results of equations (A.13)-(A.18) into equation (A.12), we have that

% (Gs(X) - Gg (X))' (Gs (%) = G5 (X)) & Orcxrc

= 615 (X): See Lemma A.2(i).
Step 7: G4 (X) 2 G4 (X): This follows from Steps 5 and 6. O

Lemma A.4. Consider éﬁ (X) defined in Theorem 2.1. Let Y be a (N x m) matriz. If
%Y’Y 5B Vy,a positive definite matriz, then the probability limit of %éﬁ (X)'Y is identical
to the limit of %GB (X)'Y.

Proof It suffices to show that G (X)'Y N 5(X)Y B 0k sm. Let Gg (X)), éﬁ (X);5
and Y; denote the i-th column of Gg (X), the i-th column of Gg (X), and the j-th column
of Y. Then, the (4, j) element of +Gg(X)'Y é (X)"Y has the following expression:

1 1 ~ 1 ~ /
G (X)) Y~ Gy (X)) Y, = + (G (X), - Gy (X),) Y.

From the Cauchy—Schwarz inequality, we have that

(1 (e, @)Y, )

S% (Gﬁ(X)i_éﬁ(X)) (Gﬂ( )i — G (X )><;Y3Yi>

Because %Y’Y 5 Vy, a positive definite matrix, by assumption and Theorem 2.1 says
~ / ~
that (Gﬁ (X);, — Gg (X)Z) <G5 (X), — Gg (X)Z> 20, the above inequality implies that

~

—~ /
1 (GB (X), — Gg (X)i) Y; % 0. Hence, 2G4 (X)'Y — 2G4 (X)'Y & Ogm, completing
the proof of the lemma. O

Lemma A.5. Consider (Alﬁ (X) in Theorem 2.1. Then, as N increases, %éﬁ (X)/R L F.

Proof From Lemma A.4 and Assumption 2(i), it suffices to show that +Gg (X)'R L F
From the expression of R in (2.3),

Gs(X)'R _ (GB (X)' Ga (X) L Gs (X)/Fa> v,

N N N
Gz (X)'Gs(X) Gz(X)T , GzX)E
+( 1) Gy (X) | GolX /3>F y GO E
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Then, from Assumptions 2(ii), 3(i), and 3(ii), it follows that +Gg(X)'R 2 F, which in

conjunction with Assumption 2(i) and Lemma A.4 completes the proof of the lemma. O

Lemma A.6. The minimization problem in Theorem 2.2 has the following closed form

solution:

~ -1

0= (X'X) ' X'R - (X'X) ' X'Gj (X) (éﬁ (X)' G (X)) Gs (X)'R.
Proof We use the following Lagrangian to solve the constrained minimization problem:
min (R — X6)' (R —X6) + AGj (X)'X6.

The first order conditions are

oX'X  X'Gg(X)|[6] [2XR
Gy (X)X 0 a ’

which yields
~ ~ —1 _
] [ 2XX XGs(X) 2X'R
A | GyX)YX 0 0 |

where the invertibility is guaranteed by Assumption 2(i) and the property of P(A}B (X) =

CA-‘rg (X) in Lemma A.2(ii). Then, standard block matrix inversion gives

~

0= (X'X) ' X'R - (X'X) ' X'Gy (X) (GB (X)' G (X)) & (X)R,

which completes the proof of the lemma. O

Proof of Theorems 2.2 and 2.3  Recall that P = X (X’X) ™" X’. From Lemmas A.2(ii)
and A.6, we have that

1 ~
GB (X)/R7

JE— ~ ~

Ga (X) = PR - G (X) (G (X)' G (X))
which in conjunction with the expression of R in (2.6) yields
éa (X) — G, (X) =nj + ng + ng,

with n; for ¢ = 1,2,3 are given by ny = P (Fa+F5F+E), ny = Gg (X)F, and ng =
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& (Co () - Ca (X)) (Go (%) - Ga (X)) = 3 1 (A.19)
NT « - « « - o == = n;n;. .
N ij:lN ’
Note that
1, XT, XTs— XE17\ (XX\'/XT, XTs— XEIlr
ll - F - F -
annl(N+N+NT N N "N "TNT

_ 17\ _ 1
2 <0L+0LxKF+0LxTZT> v (0L+0LxKF+0LxT1T) =0 (A.20)

from Assumptions 2(i) and 2(ii) and that

N+NF+N?

N (0K+OKXKF+OK><T1)/F:0 (A.21)

N

1 Gs(X)T, GzX)Ts— Gz(X)E1r\ —
n/1n2:</3<)a 5(X) T 5 (X) T>F

from Assumption 2(ii) and that

1 Gs(X)T, GsX)Ts- GsX)E1lr\ Gs(X)R1
Loty = — pX)Ta  Gg(X)Tpe  Gs(X)Elr) Gs(X) R1r
N N N N T N T
_ 1\ _
ﬁ) — <0K + 0« F + 0K><T;) F=0 (A.22)

from Lemmas A.4 and A.5 and Assumption 2(ii) and that

_ X)) X))\ — p e
1n’2n2:F/<Gﬁ( ) Gp ( >>F%F’F. (A.23)

N N

from Assumption 3(ii) and that

1, = Gg (X)/ érg (X) ég (X)/ Rly » —=
from Lemmas A.4 and A.5 and Assumption 3(ii) and that
1, 1, R'Gs(X) Gg (X)) R1p p s
—nang = —— — > FF A2
NSBE T TN N T (4.25)

from Lemma A.5. Finally, plugging the results of equations (A.20)-(A.25) into equation
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(A.19), we have that
< (GaX) -G (X))' (Ga (X) - Ga (X)) B0, (A.26)

which proves Theorem 2.2.

Next, we turn to Theorem 2.3.
wR=wR+ (Ww-w)R

We explain that wR 5 61’ in the text. Hence, it suffices to show that (W — w)’' R shrinks
to zero. Let Ry denote the ¢t-th column of R. Using the Cauchy—Schwarz inequality, we have
that

(W—w)Ry)" < (Ww—w) (W—w) (R/Ry)
(€0 (®) - Ga(X) (Gu(®)-6uX) R, ,

= =0
N N ’

where the last limit is from (A.26) and Assumption 2(i). This completes the proof of Theorem
2.3. O
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Figures and Tables

Figure 1: Out-of-sample Implementation of the Arbitrage Portfolio
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This figure illustrates how to implement the arbitrage portfolio in an out-of-sample man-
ner. We construct w with the first set of data ¢t = 1,--- , T, and hold the constructed
portfolio of w over the second set of data t = Ty +1,--- ,T in an out-of-sample manner.
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Figure 2: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models (correctly specified model)
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This figure shows the simulation results of the arbitrage portfolio when the return
generating process is calibrated to the CAPM (upper—left panel), the Fama-French
three-factor model (upper-right panel), the Fama-French five-factor model (lower—left
panel) and the Hou-Xue-Zhang four-factor model (lower-right panel). The arbitrage
portfolio w is constructed with the returns from ¢ = 1 to ¢t = 12, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use the correct number
of factors in constructing the arbitrage portfolio, i.e. K = 1 for the CAPM, K = 3
for the Fama-French three-factor model, K = 5 for the Fama-French five-factor model,
and K = 4 for the Hou-Xue-Zhang four-factor model.
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Figure 3: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models with Kyrong = Kirue + 1 (selecting too many factors)
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This figure shows the simulation results of the arbitrage portfolio when the return
generating process is calibrated to the CAPM (upper—left panel), the Fama-French
three-factor model (upper-right panel), the Fama-French five-factor model (lower—left
panel) and the Hou-Xue-Zhang four-factor model (lower-right panel). The arbitrage
portfolio w is constructed with the returns from ¢t = 1 to t = 12, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use too many factors
in constructing the arbitrage portfolio, i.e. Kyong = 2 for the CAPM, Kyong = 4 for
the Fama-French three-factor model, Kyong = 6 for the Fama-French five-factor model,
and Kyyong = 5 for the Hou-Xue-Zhang four-factor model.
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Figure 4: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models with Kyrong = Kirue — 1 (selecting too few factors)
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This figure shows the simulation results of the arbitrage portfolio when the return
generating process is calibrated to the CAPM (upper—left panel), the Fama-French
three-factor model (upper-right panel), the Fama-French five-factor model (lower—left
panel) and the Hou-Xue-Zhang four-factor model (lower-right panel). The arbitrage
portfolio w is constructed with the returns from ¢t = 1 to t = 12, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use too few factors in
constructing the arbitrage portfolio, i.e. Kyyong = 0 for the CAPM, Kyyong = 2 for the
Fama-French three-factor model, Kyyonge = 4 for the Fama-French five-factor model,
and Kyyong = 3 for the Hou-Xue-Zhang four-factor model.
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Figure 5: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models with Time-Varying Characteristics
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This figure shows the simulation results of the arbitrage portfolio when the return
generating process is calibrated to the CAPM (upper—left panel), the Fama-French
three-factor model (upper-right panel), the Fama-French five-factor model (lower—left
panel) and the Hou-Xue-Zhang four-factor model (lower-right panel). The arbitrage
portfolio w is constructed with the returns from ¢t = 1 to t = 12, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use the correct number
of factors in constructing the arbitrage portfolio, i.e. K = 1 for the CAPM, K = 3
for the Fama-French three-factor model, K = 5 for the Fama-French five-factor model,
and K = 4 for the Hou-Xue-Zhang four-factor model. Time-varying characteristics are
generated by fitting an AR(1) process to the empirically observed characteristics. The
construction is detailed in Section 3.2.4.
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Figure 6: Alpha for Varying the Number of Eigenvectors
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This figure shows the monthly alpha of the arbitrage portfolio against the CAPM, the
Fama-French three- and five-factor model, and their “momentum augmented” versions

for one through ten eigenvectors. The sample period is from January 1968 to June
2014.

49



Figure 7: Correlation Matrix with Common Factors
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This figure shows the correlation matrix between the arbitrage portfolios with 1 through
10 eigenvectors, r,(x ), r((f), o TSO , and the Fama-French three and five factors as well

as the momentum factor. The sample period is January 1968 to June 2014.
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Figure 8: Price Path and Yearly Returns of the Arbitrage Portfolio
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The top panel of the figure shows the logarithmic price path (i.e., the cumulative
returns) of the arbitrage portfolio (using six eigenvectors) in black line and the market
portfolio in red line. The areas shaded in gray depict NBER recessions. The lower
panel shows the yearly returns of the arbitrage portfolio (with six eigenvectors). The
sample period is January 1968 to June 2014.
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Figure 9: Monthly Returns of the Arbitrage Portfolio 1968-2014
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This figure shows the monthly excess returns of the arbitrage portfolio (six eigenvectors)
from January 1968 through June 2014 and a time trend (red). The time trend is
estimated by r, = a + b x t7 + ¢, with @ = 5.27, b = —0.127, 7 = 0.5501.
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Figure 10: Firm Characteristics of the Long and Short Leg of the Arbitrage Portfolio
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This figure shows the normalized rank of nine cross-sectional return characteristics for the long
and short leg of the arbitrage portfolio. The firm characteristics are the book-to-market ratio,
the debt-to-price ratio, market equity (size), profitability, investment, operating accruals, last
month’s volume, the return one month before portfolio formation (r2_1) and the return from 12
to 2 month before portfolio formation (r12_2). Each month, the characteristics are normalized
to be in the unit interval, i.e., the normalized characteristics is computed as ¢;; = %,
where ¢;; denotes the “raw” characteristic value and NV; denotes the number of firms in month
t. The rank normalization facilitates an easy comparison cross-sectionally and over time. The

sample period is January 1968 to June 2014.
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Figure 11:

Beta Heatmap

This figure plots beta-heatmap ﬁ(l)
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as follows.

We project the k-th column of CA%B (X) onto the characteristics at each month: éﬁ (X), =
Box + XBi + . We then take absolute value of @3 for each characteristic and compute

B(l) = Zle | Bk,l |. We then normalize cross-sectionally to have the normalized sum of absolute

coefficients

~
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max; 50)

. This way, the characteristic with the largest (absolute) sum of

coefficients gets a 1. We then repeat this process each month, sliding the estimation window
forward. The sample period is January 1968 to June 2014.
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Figure 12: Alpha Heatmap
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This figure plots beta-heatmap &’(‘Bm for each characteristic [. We compute a?;;m as follows.

We project Ga (X) onto the characteristics at each month: Ga (X) = ap + X +¢. We then
take absolute value of & for each characteristic and compute a(;y = [a;|. We then normalize

cross-sectionally to have the normalized sum of absolute coefficients Ar(lj‘?)m = ﬁ This
J

way, the characteristic with the largest (absolute) sum of coefficients gets a 1. We then repeat

this process each month, sliding the estimation window forward. The sample period is January

1968 to June 2014.
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Figure 13: Portfolio Weights
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This figure shows the median, minimum, maximum, and the 5% and 95% quantiles of the
portfolio weights of the arbitrage portfolio (with five eigenvectors). The solid black line is
the median portfolio weight in a given month, the dark-gray area depicts the 5% and 95%
quantiles of the weights in a month and the light-gray area depicts the monthly minimum and
maximum. The sample period is January 1968 to June 2014.
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Table 4: Risk-Adjusted Returns with One Eigenvector

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ44-UMD

alpha 1.79**  1.71*** 1.51%** 1.83*** 1.67%* 1.74** 1.71%**
(0.22)  (0.22) (0.21) (0.25) (0.25) (0.27) (0.28)
mktrf 0.07 0.01 0.05 0.01 0.04
(0.08)  (0.07) (0.06) (0.07) (0.06)
smb 0.38** 0.39*** 0.24 0.24**
(0.18) (0.15) (0.15) (0.12)
hml 0.10 0.18 0.01 0.14
(0.14) (0.15) (0.15) (0.14)
umd 0.23* 0.25** 0.35***
(0.12) (0.11) (0.11)
rmw —0.48*** —0.54***
(0.18) (0.14)
cma 0.20 0.08
(0.23) (0.19)
mkt 0.03 0.05
(0.07) (0.06)
me 0.30* 0.22*
(0.18) (0.12)
ia 0.18 0.16
(0.23) (0.21)
roe —0.18 —0.50***
(0.17) (0.14)
Adj. R? 0.00 0.07 0.12 0.12 0.18 0.07 0.15
Num. obs. 557 557 557 557 557 557 557

***p < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with one eigenvector is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table 5: Risk-Adjusted Returns with Six Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ44-UMD

alpha 2.63***  2.55%* 2.13*** 2.62%** 2.28%** 2.39%** 2.33***
(0.29)  (0.30) (0.25) (0.33) (0.28) (0.35) (0.30)
mktrf —0.05 —0.10 —-0.01 —0.09 —0.02
(0.08)  (0.07) (0.06) (0.07) (0.06)
smb 0.36* 0.38** 0.21 0.20
(0.20) (0.15) (0.15) (0.13)
hml 0.11 0.27* —0.07 0.20
(0.14) (0.16) (0.17) (0.15)
umd 0.48*** 0.49*** 0.61***
(0.12) (0.10) (0.11)
rmw —0.48** —0.61***
(0.20) (0.16)
cma 0.41 0.16
(0.26) (0.23)
mkt —0.06 —0.02
(0.08) (0.06)
me 0.35* 0.19
(0.21) (0.14)
ia 0.37 0.35
(0.27) (0.24)
roe —0.04 —0.61***
(0.18) (0.15)
Adj. R? 0.00 0.04 0.18 0.08 0.23 0.05 0.22
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with six eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Figure A.1: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models (correlated errors)
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This figure shows the simulation results of the arbitrage portfolio when the return
generating process is calibrated to the CAPM (upper—left panel), the Fama-French
three-factor model (upper-right panel), the Fama-French five-factor model (lower—left
panel) and the Hou-Xue-Zhang four-factor model (lower-right panel). The arbitrage
portfolio w is constructed with the returns from ¢t = 1 to t = 12, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean
of the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The
error bars provide a 95% confidence interval. In this simulation, we use the correct
number of factors in constructing the arbitrage portfolio, i.e. K = 1 for the CAPM,
K = 3 for the Fama-French three-factor model, K = 5 for the Fama-French five-factor
model, and K = 4 for the Hou-Xue-Zhang four-factor model. We generated correlated
errors, by creating industry clusters, with “within-industry correlation”. Details of the
data-generation are given in Section 3.2.4.



Figure A.2: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models (calibration period 2006 - 2008)
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This figure shows the simulation results of the arbitrage portfolio when the return
generating process is calibrated to the CAPM (upper—left panel), the Fama-French
three-factor model (upper-right panel), the Fama-French five-factor model (lower—left
panel) and the Hou-Xue-Zhang four-factor model (lower-right panel). The arbitrage
portfolio w is constructed with the returns from ¢t = 1 to t = 12, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean
of the arbitrage portfolio in the out-of-sample period over 10,000 simulations. In this
simulation, we use the correct number of factors in constructing the arbitrage portfolio,
ie. K =1 for the CAPM, K = 3 for the Fama-French three-factor model, K = 5
for the Fama-French five-factor model, and K = 4 for the Hou-Xue-Zhang four-factor
model. For this figure, we calibrate the parameters of the economy using the data from
2006 through 2008 to cover the parts of more volatile recent financial crisis.



Figure A.3: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models with Missing Characteristics
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This figure shows the simulation results of the arbitrage portfolio when the return
generating process is calibrated to the CAPM (upper—left panel), the Fama-French
three-factor model (upper-right panel), the Fama-French five-factor model (lower—left
panel) and the Hou-Xue-Zhang four-factor model (lower-right panel). The arbitrage
portfolio w is constructed with the returns from ¢t = 1 to t = 12, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use the correct number
of factors in constructing the arbitrage portfolio, i.e. K = 1 for the CAPM, K = 3
for the Fama-French three-factor model, K = 5 for the Fama-French five-factor model,
and K = 4 for the Hou-Xue-Zhang four-factor model. For each repetition, we use 61
characteristics for simulating returns but drop randomly picked ten characteristics for
computing w. The construction is detailed in Section 3.2.4.
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Table A.1: Risk-Adjusted Returns with Two Eigenvectors

CAPM FF3 FF3+UMD  FF5  FF5+UMD HXZ4 HXZ44+UMD

alpha 2.24%% Q.17 1.72%** 2.22%** 1.87*** 1.98%** 1.91%
(0.26)  (0.26) (0.25) (0.28) (0.27) (0.31) (0.28)
mktrf —0.04 —0.09 0.01 —0.07 0.00
(0.08)  (0.07) (0.06) (0.08) (0.06)
smb 0.33 0.35** 0.19 0.17
(0.21) (0.14) (0.18) (0.12)
hml 0.10 0.27* —0.09 0.20
(0.15) (0.14) (0.17) (0.13)
umd 0.51*** 0.53*** 0.65***
(0.13) (0.12) (0.12)
rmw —0.45* —0.59***
(0.20) (0.14)
cma 0.41* 0.15
(0.24) (0.18)
mkt —0.03 0.01
(0.08) (0.07)
me 0.31 0.14
(0.22) (0.13)
ia 0.38 0.35
(0.26) (0.23)
roe —0.01 —0.61*
(0.18) (0.14)
Adj. R? -0.00 0.03 0.21 0.08 0.26 0.04 0.26
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with two eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.



Table A.2: Risk-Adjusted Returns with Three Eigenvectors

CAPM FF3 FF3+UMD  FF5  FF5+UMD HXZ4 HXZ44+UMD

alpha 2.14**  2.06*** 1.75%* 2.18*** 1.93% 2.02%** 1.97%*
(0.24)  (0.25) (0.22) (0.27) (0.25) (0.30) (0.26)
mktrf 0.02 —-0.03 0.04 —0.03 0.02
(0.07)  (0.06) (0.05) (0.06) (0.05)
smb 0.36* 0.37** 0.21 0.21*
(0.20) (0.15) (0.15) (0.12)
hml 0.11 0.23* 0.01 0.22*
(0.14) (0.14) (0.15) (0.13)
umd 0.36*** 0.38*** 0.49***
(0.12) (0.11) (0.12)
rmw —0.49* —0.59***
(0.20) (0.16)
cma 0.21 0.02
(0.22) (0.19)
mkt —0.01 0.02
(0.06) (0.05)
me 0.32* 0.20
(0.19) (0.13)
ia 0.24 0.22
(0.24) (0.22)
roe —0.11 —0.56™**
(0.16) (0.13)
Adj. R? -0.00 0.06 0.18 0.12 0.25 0.06 0.23
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with three eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.



Table A.3: Risk-Adjusted Returns with Four Eigenvectors

CAPM FF3 FF3+UMD  FF5  FF5+UMD HXZ4 HXZ44+UMD

alpha 2.48*** Q.39 1.98%* 2.45%** 2.13*** 2.23*** 2.16**
(0.26)  (0.27) (0.23) (0.29) (0.24) (0.30) (0.25)
mktrf —-0.04 —-0.08 0.01 —0.06 —0.00
(0.07)  (0.07) (0.06) (0.07) (0.06)
smb 0.35* 0.36™** 0.20 0.19*
(0.18) (0.14) (0.14) (0.12)
hml 0.13 0.28** —0.05 0.21
(0.13) (0.14) (0.16) (0.13)
umd 0.46*** 0.48** 0.59***
(0.10) (0.09) (0.10)
rmw —0.44* —0.57**
(0.19) (0.15)
cma 0.39* 0.16
(0.23) (0.20)
mkt —0.04 0.00
(0.07) (0.06)
me 0.33* 0.19
(0.19) (0.12)
ia 0.38 0.36*
(0.24) (0.20)
roe —0.03 —0.57***
(0.16) (0.13)
Adj. R? -0.00 0.04 0.20 0.09 0.26 0.05 0.25
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with four eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.



Table A.4: Risk-Adjusted Returns with Five Eigenvectors

CAPM FF3 FF3+UMD  FF5  FF5+UMD HXZ4 HXZ44+UMD

alpha 2.56™*  2.48*** 2.04*** 2.53*** 2.18*** 2.30*** 2.23***
(0.28)  (0.29) (0.24) (0.31) (0.27) (0.33) (0.28)
mktrf —-0.06 —0.11 —0.02 —0.09 —0.03
(0.08)  (0.07) (0.06) (0.07) (0.06)
smb 0.36* 0.38*** 0.22 0.21
(0.20) (0.14) (0.16) (0.13)
hml 0.12 0.28* —0.08 0.20
(0.14) (0.16) (0.17) (0.14)
umd 0.49** 0.51%* 0.63***
(0.12) (0.11) (0.11)
rmw —0.45* —0.59***
(0.21) (0.16)
cma 0.44* 0.18
(0.25) (0.22)
mkt —0.06 —0.02
(0.08) (0.06)
me 0.35* 0.20
(0.20) (0.13)
ia 0.39 0.36
(0.26) (0.24)
roe —0.03 —0.61*
(0.18) (0.14)
Adj. R? 0.00 0.04 0.20 0.09 0.25 0.05 0.25
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with five eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.



Table A.5: Risk-Adjusted Returns with Seven Eigenvectors

CAPM FF3 FF3+UMD FF5  FF5+UMD HXZ4 HXZ4+UMD

alpha 2.69***  2.63*** 2.23%** 2.68*** 2.37** 2.47*%* 2.41%**
(0.29)  (0.30) (0.26) (0.33) (0.29) (0.35) (0.32)
mktrf —-0.06 —0.12* —0.04 —0.11 —0.05
(0.08)  (0.07) (0.06) (0.07) (0.06)
smb 0.39** 0.40%** 0.24 0.23*
(0.19) (0.15) (0.16) (0.13)
hml 0.08 0.22 —0.12 0.14
(0.14) (0.15) (0.17) (0.15)
umd 0.45** 0.46** 0.59***
(0.12) (0.11) (0.11)
rmw —0.45* —0.57**
(0.20) (0.15)
cma 0.41 0.18
(0.26) (0.22)
mkt —0.07 —0.04
(0.08) (0.06)
me 0.36* 0.22
(0.20) (0.14)
ia 0.33 0.31
(0.27) (0.25)
roe —0.05 —0.59***
(0.19) (0.16)
Adj. R? 0.00 0.04 0.17 0.09 0.22 0.05 0.21
Num. obs. 557 557 557 557 557 557 557

*xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with seven eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table A.6: Risk-Adjusted Returns with Eight Eigenvectors

CAPM FF3 FF3+UMD  FF5  FF5+UMD HXZ4 HXZ44+UMD

alpha 2.67*  2.62%* 2.13*** 2.65%** 2.27*** 2.471%* 2.33***
(0.29)  (0.30) (0.26) (0.33) (0.28) (0.36) (0.31)
mktrf —-0.05 —0.12 —0.02 —0.09 —0.02
(0.08)  (0.07) (0.06) (0.08) (0.07)
smb 0.37** 0.39*** 0.22 0.21
(0.18) (0.15) (0.18) (0.14)
hml 0.05 0.23 —0.17 0.14
(0.14) (0.16) (0.17) (0.15)
umd 0.55*** 0.57** 0.70***
(0.12) (0.11) (0.12)
rmw —0.44* —0.59***
(0.20) (0.15)
cma 0.48** 0.20
(0.24) (0.22)
mkt —0.06 —0.01
(0.08) (0.06)
me 0.35* 0.18
(0.21) (0.14)
ia 0.33 0.30
(0.29) (0.25)
roe 0.03 —0.61*
(0.21) (0.16)
Adj. R? -0.00 0.03 0.19 0.07 0.24 0.03 0.23
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with eight eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table A.7: Risk-Adjusted Returns with Nine Eigenvectors

CAPM FF3 FF3+UMD FF5 FEF5+UMD HXZ4 HXZ4+UMD
alpha 2.60*** 2,57 2.15%** 2.66™** 2.33*** 2.45%** 2.38***
(0.29)  (0.30) (0.25) (0.33) (0.28) (0.36) (0.30)
mktrf —-0.01 —-0.08 0.01 —-0.07 —0.01
(0.07)  (0.07) (0.05) (0.07) (0.06)
smb 0.35** 0.37* 0.20 0.19*
(0.17) (0.14) (0.14) (0.11)
hml 0.02 0.17 —0.13 0.13
(0.13) (0.15) (0.17) (0.13)
umd 0.47** 0.49** 0.62***
(0.12) (0.10) (0.11)
rmw —0.48** —0.61***
(0.20) (0.15)
cma 0.33 0.09
(0.23) (0.18)
mkt —0.04 —0.00
(0.08) (0.06)
me 0.31* 0.16
(0.19) (0.12)
ia 0.21 0.19
(0.25) (0.23)
roe —0.03 —0.60***
(0.19) (0.15)
Adj. R? -0.00 0.04 0.18 0.08 0.24 0.03 0.23
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with nine eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The

sample period is January 1968 to June 2014.
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Table A.8: Risk-Adjusted Returns with Ten Eigenvectors

CAPM FF3 FF34+UMD FFb5 FF5+UMD HXZ4 HXZ4+UMD

alpha 2.22%% Q.22+ 1.79*** 2.33*** 1.99*** 2.06*** 2.00%**
(0.28)  (0.30) (0.27) (0.33) (0.30) (0.37) (0.32)
mktrf —0.02 —-0.06 0.03 —0.05 0.01
(0.07)  (0.07) (0.07) (0.07) (0.07)
smb 0.19 0.20 0.01 —0.01
(0.24) (0.18) (0.19) (0.16)
hml —0.03 0.13 —0.20 0.08
(0.16) (0.14) (0.17) (0.13)
umd 0.48*** 0.50*** 0.63***
(0.13) (0.12) (0.14)
rmw —0.59*** —0.72%**
(0.19) (0.16)
cma 0.37 0.12
(0.26) (0.22)
mkt —0.01 0.03
(0.08) (0.07)
me 0.18 0.02
(0.24) (0.17)
ia 0.22 0.20
(0.28) (0.23)
roe —0.00 —0.58**
(0.18) (0.17)
Adj. R? -0.00 0.01 0.13 0.06 0.20 0.01 0.18
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with ten eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table A.10: Alphas using 24-month Estimation Period

# Eigenvectors CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD

1 1.27 1.15 1.24 1.30 1.36 1.49 1.48
2 1.53 1.44 1.28 1.56 1.43 1.57 1.53
3 1.91 1.84 1.68 1.96 1.82 1.93 1.89
4 2.21 2.13 191 2.26 2.09 2.22 2.18
5 2.31 2.22 1.99 2.37 2.18 2.31 2.27
6 2.43 2.34 2.08 2.45 2.24 241 2.36
7 247 238 2.12 2.50 2.29 2.46 241
8 2.49 2.39 2.15 2.53 2.34 2.48 2.44
9 2.55 2.46 2.21 2.60 2.40 2.54 2.49
10 2.58 2.48 2.24 2.61 241 2.55 2.51

This table reports alphas (%/month) against Fama and French (1993), Carhart (1997), Fama
and French (2015) and the g-factor model (HXZ4) by Hou et al. (2015). The arbitrage portfolio
is constructed using one through ten eigenvectors. It is estimated every month using the steps
outlined in Section 2. The sample period is January 1968 to June 2014. We use 24 months of data
to estimate the weights of the arbitrage portfolio and then hold the portfolio for one month.
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Table A.12: Alphas using 36-month Estimation Period

# Eigenvectors CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD

1 0.94 0.75 1.14 1.04 1.31 1.46 1.49
2 0.90 0.82 1.00 1.06 1.18 1.22 1.23
3 1.22 1.14 1.29 1.41 1.50 1.55 1.55
4 1.37 1.28 1.35 1.56 1.59 1.68 1.68
5 1.65 1.53 1.60 1.80 1.83 1.93 1.92
6 1.76 1.66 1.71 1.92 1.93 2.03 2.02
7 1.84 1.75 1.77 1.99 1.99 2.10 2.09
8 1.85 1.75 1.77 1.99 1.98 2.08 2.07
9 1.90 1.81 1.82 2.05 2.04 2.15 2.13
10 1.94 1.85 1.87 2.09 2.08 2.19 2.18

This table reports alphas (%/month) against Fama and French (1993), Carhart (1997), Fama
and French (2015) and the g-factor model (HXZ4) by Hou et al. (2015). The arbitrage portfolio
is constructed using one through ten eigenvectors. It is estimated every month using the steps
outlined in Section 2. The sample period is January 1968 to June 2014. We use 36 months of data
to estimate the weights of the arbitrage portfolio and then hold the portfolio for one month.
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Table A.13: Sharpe Ratios using various rebalancing frequencies

Rebalancing Frequency per Year

# Eigenvectors 1

2

3

4

6 12

—_

0.35
0.44
0.42
0.47
0.47
0.47
0.45
0.41
0.44
0.31

© 00 3 O U = W N

—_
o

0.43
0.58
0.71
0.70
0.67
0.69
0.74
0.68
0.68
0.55

0.48
0.68
0.74
0.73
0.58
0.62
0.69
0.69
0.73
0.57

0.72
0.87
0.91
0.92
0.81
0.80
0.80
0.77
0.93
0.72

0.96 1.44
1.06 1.49
1.25 1.71
1.26 1.75
1.10 1.66
1.13 1.67
1.22 1.72
1.13 1.58
1.22 1.75
1.10 1.35

This table reports annualized Sharpe Ratios of our arbitrage portfolios with various rebalancing
frequencies. The last column of 12 rebalancing frequency corresponds to our baseline case. We use
12 months of data to estimate the weights of the arbitrage portfolio and then hold the portfolio
over for the next 12/frequency months, at the end of which we rebalance the arbitrage portfolio
using the previous 12 month data. The sample period is January 1968 to June 2014.
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Table A.15: Alphas for Fourth Order Legendre Polynomials

# Eigenvectors CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD

1 2.52 2.49 2.10 2.57 2.26 2.34 2.28
2 2.99 2.97 2.37 2.99 2.52 2.66 2.58
3 2.75 2.70 2.26 2.76 2.40 2.51 2.45
4 2.98 2.92 2.36 2.94 2.50 2.60 2.53
5 3.04 2.98 2.39 3.00 2.54 2.62 2.53
6 3.17 314 2.53 3.18 2.70 2.80 2.7
7 3.25 3.23 2.63 3.22 2.76 2.85 2.77
8 3.16 3.17 2.52 3.16 2.66 2.73 2.64
9 3.05 3.05 241 3.04 2.55 2.61 2.53
10 2.70 2.69 2.11 2.64 2.20 2.19 2.12

This table reports alphas (%/month) against Fama and French (1993), Carhart (1997), Fama
and French (2015) and the g-factor model (HXZ4) by Hou et al. (2015). The arbitrage portfolio
is constructed using one through ten eigenvectors. It is estimated every month using the steps
outlined in Section 2. The sample period is January 1968 to June 2014.
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Table A.17: Alphas without Micro-Cap Stocks

# Eigenvectors CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD

1 1.42 1.37 1.09 1.47 1.25 1.30 1.26
2 1.82 1.78 1.24 1.88 1.45 1.53 1.46
3 1.74 1.68 1.29 1.79 1.47 1.54 1.48
4 1.99 1.96 1.45 2.04 1.64 1.73 1.66
5 2.04 2.03 1.46 2.10 1.65 1.73 1.65
6 2.04 2.02 1.43 2.11 1.64 1.74 1.65
7 2.15 2.16 1.57 2.26 1.80 1.89 1.81
8 2.13 2.14 1.56 2.18 1.72 1.85 1.77
9 1.81 1.85 1.28 1.90 1.45 1.58 1.50
10 1.53 1.54 0.96 1.58 1.12 1.20 1.12

This table reports alphas (%/month) against Fama and French (1993), Carhart (1997), Fama
and French (2015) and the g-factor model (HXZ4) by Hou et al. (2015). The arbitrage portfolio
is constructed using one through ten eigenvectors. It is estimated every month using the steps
outlined in Section 2. The sample period is January 1968 to June 2014. We exclude micro-cap
stocks, smaller than 10% quantile of the market capitalization among NYSE traded stocks.
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Table A.18: Risk-Adjusted Returns with respect to Alternative Factor Models

SY MP FF3+UMD+LIQ FF34+UMD+BAB FF34+UMD+STREV

(Intercept) 2.19*** 2.12%* 2,18 2,18
(0.28) (0.26) (0.27) (0.26)
mktrf 0.01 —0.01 —0.01 0.00
(0.08) (0.06) (0.06) (0.06)
smb 0.43** 0.38*** 0.38*** 0.39***
(0.20) (0.14) (0.15) (0.15)
mgmt 0.30
(0.21)
perf 0.22*
(0.12)
hml 0.27* 0.32** 0.28*
(0.14) (0.13) (0.16)
umd 0.48*** 0.50*** 0.46***
(0.11) (0.11) (0.11)
ligf 0.03
(0.06)
bab —0.10
(0.09)
strev —0.11
(0.10)
Adj. R? 0.06 0.17 0.18 0.18
Num. obs. 557 557 557 557

***p < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the several alternative
factor models. The arbitrage portfolio with six eigenvectors is estimated every month using the
steps outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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