Revealed Heuristics: Evidence from Investment Consultants’ Search Behavior*

Sudheer Chavaa
Soohun Kimb
Daniel Weagleyc

First Draft: May 2018
This Draft: May 1, 2019

Abstract

Using proprietary data from a major fund data provider, we analyze the screening activity of investment consultants (ICs) who advise institutional investors with trillions of dollars in assets. We find that ICs frequently shortlist funds using threshold screens clustered at round, base 5 or base 10 numbers: $500MM for AUM, 0\% for the return net of a benchmark, and quartiles for return percentile rank screens. A fund’s probability of being eliminated by a screen is significantly negatively related to its future fund attention and flows, with funds just above the $500MM AUM threshold getting 14 to 18\% more page views and 5 to 9 pps greater flows over the next year compared to similar funds just below the threshold. Our results are consistent with ICs using a two-stage, consider-then-choose decision making process, and cognitive reference numbers in selecting screening thresholds.

Keywords: heuristics, consider-then-choose, consideration sets, cognitive reference points, investment consultants, investment screens, mutual funds

JEL Classification: G41, G11, G14, G29

*We are grateful to Daniel Brickhouse at eVestment. We are grateful to Jeffrey Hales, Jiacui Li, Jose Vicente Martinez, Abhiroop Mukherjee, Peter Simasek, the 2019 Western Finance Association Conference program committee, the 2019 SFS Cavalcade program committee, and seminar and conference participants at Georgia Tech, KAIST, the 2019 Mid-Atlantic Research Conference, the 2018 SFS Cavalcade Asia-Pacific, and the 2018 Conference on Asia-Pacific Financial Markets for helpful comments on the paper.

aGeorgia Institute of Technology; email: sudheer.chava@scheller.gatech.edu.

bGeorgia Institute of Technology; email: soohun.kim@scheller.gatech.edu.

cGeorgia Institute of Technology; email: daniel.weagley@scheller.gatech.edu.
1 Introduction

Selecting an optimal portfolio of assets is a complex task for investors that entails significant information collection and processing. It is unlikely investors are able to process all potentially relevant information due to information processing costs and constraints. Instead, investors are likely to use heuristics (i.e., simplified decision-making procedures) to reduce the complexities involved in selecting investments and building their portfolio (see Tversky and Kahneman (1974)). In this paper, we provide some of the first direct evidence on how investors process information, effectively peering inside the blackbox of investment decision making. We find investment consultants (ICs), a sophisticated class of financial decision makers, use simple heuristics in processing information and that commonality in these processing procedures across consultants has a causal effect on future mutual fund attention and flows.

ICs are a key feature of the asset management industry and advise institutional investors on their choice of fund managers. An overwhelming majority of the U.S. public plan sponsors use ICs (Pensions and Investments (2017); Goyal and Wahal (2008)). Moreover, ICs’ recommendations have a significant impact on fund flows. Using survey data, one can observe some of the recommendations of ICs and derive useful insights on what factors drive their recommendations (Jenkinson, Jones, and Martinez (2016)). However, it is not clear how the consultants process information and decide on their recommendations.

We provide evidence on how ICs process information by examining their search behavior on the website of eVestment, a major fund data provider.\footnote{eVestment® is a significant player in the fund data industry with their clients comprising 70% of the top 50 global consultants, 100% of the top 50 global managers and 72% of the top 50 largest U.S. plans. Currently, eVestment clients advise or manage over $38 trillion in assets. (Source: http://www.evestment.com)} eVestment provides both hard and soft information on traditional and alternative funds to investment consultants and institutional investors.\footnote{We use the term ‘fund’ to refer to the investment ‘products’ that investment consultants recommend. Each ‘product’ can have multiple ‘vehicles’ which follow the same strategy, but may differ on other dimensions like the fee schedule. A firm can have multiple ‘products’ invested in different strategies. We use the term ‘fund’, ‘product’, ‘vehicle’ and ‘manager’ interchangeably throughout the paper.} We examine how eVestment’s investment consultant clients download...
datasets of funds from the website. Although the clients can choose to download the universe of funds for further analysis, they frequently apply filters or screens to the data. Screening the data involves choosing a fund aspect (e.g., AUM) and a threshold value (e.g., ≥$500MM). A majority of these screens eliminate at least half of the relevant universe of funds from the IC’s initial consideration set.

The observed screening behavior is consistent with a two-stage consider-then-choose (CTC) decision making heuristic. CTC is a process used to choose an object from a choice set. A decision maker faced with a set of options first forms a smaller consideration set of options, then evaluates the options within the consideration set and makes their selection. Objects outside of the consideration set are immediately eliminated from contention.

We provide a descriptive model of the investment consultant fund selection decision. The model shows that the use of a CTC process with a cutoff-rule (i.e., eliminating funds below a certain threshold value) can be boundedly rational if investment consultants face costs to evaluate each fund. The optimal screening threshold is the value in which the cost of evaluating the marginal fund is equal to the expected increase in utility. We want to highlight that CTC stands in contrast to most rational asset pricing theories, including CAPM, which assume that investors consider all traded assets in an economy. In support of CTC, we show that even when investors have access to enormous amounts of information for the near-universe of funds, they actively limit their attention to a subset of funds.

The assumption that ICs face non-trivial fund evaluation costs seems very plausible. Jenkinson et al. (2016) provide evidence that investment consultants’ recommendations are driven primarily by “soft” factors. These “soft” factors cannot be easily quantified and require significant effort or costs to evaluate. Evaluating the “soft” factors of all funds in the investment universe would be extremely costly. By screening managers on a relatively costless signal (like past returns or AUM) in the initial stage of the decision making process,

3Merton (1987) provided the first model of limited attention in which investors only invest in a subset of securities either due to informational frictions or institutional structures.
consultants can optimize their evaluation costs and their overall utility.

By directly observing the screens used by ICs, we are able to provide significant insight into the IC decision making process. We find ICs initially screen mainly on return percentile ranks, excess returns over a benchmark and fund-level AUM (see Figure 1). Screens on firm-level assets under management occur at a much lower frequency. For the return-based screens, there is significant clustering on the 3 and 5 year time horizons. With screens on returns over the past 3 years and 5 years accounting for 30% and 32%, respectively, of the return screens, while less than 2% of the return screens are at the 2-, 4- or 6-year horizons. We find that horizons less than or equal to one year are used 15% of the time, which is surprising given the substantial noise in short term performance. It is unlikely the relatively high usage of the 1, 3 and 5 year time horizons is due to rational optimization, of greater likelihood is that these horizons are industry norms that have developed over time.

We also examine patterns in the timing of ICs use of screens and the performance “as of” dates used for screens. We find there is a median three month lag between the date ICs screen and download fund data and the performance “as of” date. Lags of 4+ months are not uncommon. This indicates there is likely to be a lengthy time lag before performance affects investor attention and flows. This is consistent with empirical findings on the lagged response of flow to performance (see Chevalier and Ellison (1997) and Sirri and Tufano (1998), among many). We find fund performance as of the fourth quarter is used more often than performance as of quarters one, two or three. This greater use of fourth quarter performance does not seem to be related to seasonality in screening activity; we find consultant screening activity is fairly uniform across months with small increases in June and August.

After documenting the frequency different fund aspects are used by ICs, we next examine how ICs choose screening thresholds. We find evidence consistent with the use of a cognitive reference numbers heuristic. If an IC chooses to screen on a specific aspect, they are free to manually input the threshold value (i.e., there is no drop down menu of choices). Even so,
there is significant commonality in the threshold values used across ICs with clustering at round numbers especially of base 5 and base 10. For fund-level AUM thresholds, there is clear clustering at values of $100MM, $500MM and $1B (Figure 2). Threshold values of $99MM, $499MM or $999MM are used zero times. This leads to large drops in the probability a fund is eliminated around these thresholds. For example, funds with AUM of $499MM have a 44% chance of being eliminated, while funds with AUM of $501M have only a 29% chance of being eliminated when an AUM threshold is used. A similar plot for return percentile rank thresholds shows that there is significant clustering at rank quartiles (Figure 3). For example, the probability of elimination decreases by over fifty percentage points at the 50th percentile rank threshold. In other words, more than half of the return rank screens use the median as the cut-off value. For the excess returns over a benchmark screens, there is significant clustering at the 0 percentage points threshold (see Figure 4). Funds that barely outperform the benchmark enter significantly more consideration sets than funds that barely underperform the benchmark even if their returns differ by a few basis points.

Rosch (1975) shows that, given a wide range of granular choices, people tend to categorize the potential choice sets into typical types based on their own cognitive reference points. Frequently, if the choice variable is expressed in numbers, they tend to categorize the numbers around multiples of ten. These human tendencies yield interesting patterns such as the discontinuous frequency of retaking the SAT around scores of 900, 1000, ... , 1400 (Pope and Simonsohn, 2010) and an uneven distribution of rightmost digits in prices (Schindler and Kirby, 1997). We find a similar cognitive reference number bias when the investment consultants select the threshold level for AUM or past returns.

The clustering of screens at cognitive reference numbers leads to significant differences in

4Other examples include: real estate listings (Chava and Yao, 2017), (mis)reporting of personal assets in loan applications above round numbers (Garmaise, 2015), analysts’ rounding earnings per share forecasts to the nearest nickel (Herrmann and Thomas, 2005), excess stock buying and selling on and around round numbers (Bhattacharya, Holden, and Jacobsen, 2012), poor performance of investors’ that submit a disproportionate amount of limit orders at round numbers (Kuo, Lin, and Zhao, 2015) and hedge funds much more likely to report returns just greater than zero versus just less than zero (Bollen and Pool, 2012).
the probability of a fund being eliminated from consideration around these threshold values. In turn, this difference in elimination rate has the potential to affect the amount of attention and future capital funds receive. We test for these effects using AUM screens because it is relatively straightforward to determine on which side of an AUM threshold a fund falls.⁵

Our first set of analysis documents the correlation between future fund outcomes and a fund’s elimination rate. We include all funds and regress the future fund outcome of interest, either attention (as proxied by page views on the eVestment website) or flows over the next four quarters, on a fund’s elimination rate plus control variables and different combinations of fixed effects. We find funds with a greater probability of being eliminated by a screen receive less attention and lower future fund flows. The effects are economically meaningful: a 10 percentage point increase in elimination rate is associated with 3.1 to 3.6 fewer page views (which is 11.25% of the median number of page views) and 5.7 to 6.1 percentage points lower flows over the next four quarters.

To more precisely estimate the effect of screening behavior on fund outcomes and to assess the impact of clustering at cognitive reference numbers, we analyze outcomes near a widely used fund threshold, $500MM. The $500MM value is the second most highly used threshold and is distanced enough from other highly used thresholds to allow for a clean analysis of the effect of thresholds on fund outcomes. We find funds just above the $500MM threshold receive between 14-18% more page views and 5.1 to 8.8 percentage points greater fund flows over the next four quarters compared to funds just below the threshold. These effects are economically very significant.

We take a number of steps to control for any differences between funds just above the $500MM threshold (“treated”) and funds just below (“control”). First, we only examine funds within $50M of the threshold in the OLS analysis. Second, we show the result is robust to including different combinations of fund style and time fixed effects. Third, we

⁵We don’t have access to data to recreate the exact percentile rank distribution or excess return over benchmark and, therefore, cannot use these characteristics to conduct similar analysis.
show the result is robust to matching funds based on past performance, past flows and within the same style-time bins using coarsened exact matching. Fourth, we use a regression discontinuity design and find a similar result. As further robustness, we examine three minimally used placebo thresholds ($400M, $600M and $700M thresholds) and find no effect at these thresholds. These results provide comfort there is no systematic bias driving our results.

We examine an alternative explanation for the relative difference in flows around the $500MM threshold. It is possible that funds just above the threshold outperform funds just below, which would justify the greater flows to funds just above the threshold. Hence, we examine if funds just above the $500MM threshold earn higher ex-post returns than funds just below the $500MM threshold. In these tests, we examine the next quarter’s return to mitigate the potential impact the differential in future fund flows may have on future performance. We do not find evidence consistent with this explanation. In fact, funds just above the $500MM threshold earn approximately 20 basis points lower average returns per quarter compared to funds just below the threshold, although the statistical significance is marginal. We do not find a similar return differential at the placebo thresholds.

We examine some potential reasons for this outperformance. One potential explanation is that fund managers below the threshold take actions to increase the probability of crossing the $500MM threshold and this increases their average net return. This would require fund managers to be aware of the effect of crossing the threshold on future fund flows, which may or may not be the case. To test this explanation, we examine if funds just below the $500MM threshold take on greater risk by comparing the value-weighted average systematic risks, standard deviation, skewness and kurtosis of fund holdings across treatment and control funds. We do not find significant differences across the two groups. We also do not find evidence that differences in fees can explain the results. These tests do not rule out differences in unobservable factors such as differences in effort expended or return manipulation. Although it is unlikely the effect would be of such magnitude, another potential explanation is the
diseconomies of fund size, which is frequently assumed in rational explanations of mutual fund behavior (e.g., Berk and Green (2004) and Berk and van Binsbergen (2015)).

Our paper complements the evidence provided by Jenkinson et al. (2016) on the drivers of investment consultants recommendations and, in turn, capital flows. They examine consultant survey responses about asset managers and find investment consultants rely more on “soft” factors than performance factors when selecting managers. We show, on the other hand, that consultants do use performance factors and assets under management (which is potentially related to both soft and hard factors) in their manager selection process - at least in the beginning stages of analysis. We do not observe the consultants final recommendations though. It is likely, based on Jenkinson et al. (2016), that after screening on “hard” factors, consultants rely more on “soft” factors in making their final selection. In other words, the consideration set decision is driven by “hard” factors, while the final “choice” decision is driven by much more costly to evaluate “soft” factors.

Our paper is closely related to the literature on the determinants of fund flows. There is already a significant amount of evidence in support of both rational and behavioral drivers of fund flows (see Berk and Green (2004); Pastor and Stambaugh (2012); Kim (2017); Berk and van Binsbergen (2016), Barber, Huang, and Odean (2016), Chakraborty, Kumar, Muhlhofer, and Sastry (2018) and Ben-David, Li, Rossi, and Song (2019)). Most similar to our paper is the large literature documenting the effect of investors’ limited attention on capital allocation (see Guercio and Tkac (2008); Sirri and Tufano (1998); Tetlock (2007); Kaniel, Starks, and Vasudevan (2007); Barber and Odean (2008); Engelberg and Parsons (2011); Solomon, Soltes, and Sosyura (2014); Fang, Peress, and Zheng (2014); and Kaniel and Parham (2017); Da, Engelberg, and Gao (2011); Ben-Rephael, Da, and Israelsen (2017, 2018), and Li (2018)). Most of these studies require the researchers to hypothesize a specific channel through which

6Jenkinson et al. (2016) show consultants recommendations have a significant effect on flows. Although investment consultants recommendations affect flows, there are mixed results on the ability of investment consultants to predict future performance. Jenkinson et al. (2016) find consultant recommendations are not related to future performance. Goyal and Wahal (2008) find consultants add value for small plan sponsors, but are detrimental to the performance of large plan sponsors.

Electronic copy available at: https://ssrn.com/abstract=3277424
funds or stocks enter (or leave) investors attention set (like discussion in the media) and examine if flows, trading behavior or asset price dynamics are consistent with the proposed channel. In the existing studies, the investor’s construction of a consideration set is rather passive or very limited. Our paper, in contrast, provides direct evidence on the active decisions ICs make to limit their consideration set. They start with the near-universe of relevant options and actively reduce the number of options. To the best of our knowledge, the active use of CTC as a decision making process has not been studied in the context of investment management. Overall our paper is the first to provide direct evidence of fund flows being partially driven by the CTC and cognitive reference numbers heuristics.

2 Theory and Research Design

We illustrate the trade-offs facing investment consultants by building a simple model of fund choice, which is presented in Appendix A. We show the use of a CTC process with a cutoff-rule (i.e., eliminating funds below a certain threshold value) can be boundedly rational if the decision maker faces costs to evaluate each fund. In our model, investors observe a costless, noisy signal of fund manager skill (e.g., past performance) and incur an evaluation cost to learn skill more precisely (e.g., learning about the “soft” factors of funds and fund managers). We are agnostic about the source of the evaluation cost, it could be mental costs associated with processing a complex information set or pecuniary costs related to hiring additional employees.

Under the mild assumption that ICs can infer higher fund manager skill from a higher

7The use of CTC by consumers has been extensively studied in the marketing literature and many recent papers in economics as well as finance endogenize the information acquisition process to explain decision maker behavior. In particular, Caplin, Dean, and Leahy (forthcoming) find that a consumer may optimally consider only alternatives above an endogenously determined threshold, resembling the observed behavior of ICs. See Hauser, Ding, and Gaskin (2009) for a survey of the CTC literature in the context of consumer choice. The economics literature on endogenous information acquisition started with the introduction of ‘rational inattention’ by Sims (2003). See Van Nieuwerburgh and Veldkamp (2009, 2010) and Li (2018) for the application of rational inattention to investment decisions.
signal, it turns out that a cutoff-rule eliminating funds with a signal value below a specific threshold is optimal. The funds remaining after applying the cutoff-rule form the consideration set. The investor then evaluates all funds in the consideration set and chooses the fund that provides maximum utility. The investor chooses an optimal threshold value such that the increase in expected utility from including the marginal fund just offsets the additional cost of evaluating the marginal fund. We extend the base model to include a utility “bonus” for selecting a cognitive reference number as the threshold value and show through simulation that the distribution of threshold values resembles patterns observed in the screening data. The model predictions are strikingly consistent with the observed behavior of investment consultants.

2.1 Research Design

We empirically examine how investment consultants (ICs) construct a consideration set of funds and the effect their consideration set choices have on fund outcomes. We conduct two sets of analysis to this end. Our first set of analysis is straightforward: we examine the frequency different screening criteria are used. This allows us to assess the importance of different fund characteristics and how ICs choose their threshold values. Our second set of analysis allows us to assess the effect of screening behavior on fund outcomes. The use of a fund screen creates a sharp discontinuity in the probability a fund enters the investment consultant’s attention set. This, in turn, can create a discontinuity in the probability a fund receives capital. If there is commonality in the threshold values used across investment consultants, this should create a discontinuity in the aggregate amount of attention and future capital a fund receives. Our examination of fund level outcomes tests for these effects.

In assessing the effect of screening behavior on fund outcomes, we focus our empirical tests on the assets under management (AUM) screens. As shown in Figure 1, most investment consultants use AUM and past returns as their selection criteria. Because the benchmark
return used to calculate excess returns as well as the return evaluation period varies across screens, it is not easy to analyze funds based on returns. In contrast, AUM allows for a much cleaner comparison across funds. This is why we concentrate on AUM screens. First, we examine the correlation between a fund’s probability of being eliminated by an assets under management screen and either future fund attention, as measured by page views, or future flows.

We run a regression of the form:

$$Y_{i,q+1\text{ to } q+4} = \alpha + \beta \times \text{ElimRate}_{i,q} + \gamma \times X + f_i + t_q + \epsilon_{i,q+1},$$ \hspace{1cm} (2.1)

where $Y_{i,q+1\text{ to } q+4}$ is the future outcome of interest of fund i over quarters $q + 1$ to $q + 4$, $\text{ElimRate}_{i,q}$ is the probability fund i is eliminated given its assets under management at time q ($\text{AUM}_{i,q}$), X is a set of control variables including the logarithm of assets under management, f_i is a firm fixed effect, and t_q is a year-quarter (time) fixed effect. The probability of elimination is the probability a fund is eliminated conditional on a fund-level assets under management screen being used and the fund’s current assets under management. We calculate the probability of elimination using the entire sample of fund-level assets under management screens. For example, if the fund has an AUM of 10MM, we calculate the percentage of screens in our sample an AUM of 10MM would fail to pass. The coefficient of interest is β with a $\beta < 0$ indicating a negative relationship between the probability of elimination and the outcome of interest.

The regression in Equation (2.1) may suffer from an omitted variable bias, in which funds that have a low probability of elimination are different from funds with a high probability of elimination along a number of dimensions. Our next set of tests addresses this concern by examining fund outcomes around a commonly used threshold. Our empirical strategy compares funds just above the common threshold to funds just below. We use two different regression specifications to estimate the effect the use of a common threshold value has on
fund outcomes.

Our first regression specification is as follows:

\[
Y_{i,q+1 \text{ to } q+n} = \alpha + \beta \cdot Above_{i,q}^{\text{Threshold}} + \epsilon_{i,q+1},
\]

(2.2)

where \(Y_{i,q+1 \text{ to } q+n}\) is the future outcome of interest of fund \(i\) over quarters \(q + 1\) to \(q + n\) and \(A_{i,q}\) is a dummy variable equal to one if the fund is above the threshold of interest (e.g., when analyzing the $500MM threshold, \(Above_{i,q}^{500} = 1\) if AUM ≥ $500MM).

The identifying assumption is that funds above and below the threshold are similar along all relevant dimensions except funds above meet the threshold criteria. In other words, there is no omitted variable that is correlated with \(Above_{i,q}^{\text{Threshold}}\) that affects the outcome of interest. We only examine funds within a $50M band of the threshold (e.g., $450MM to $550MM for the $500MM threshold) to ensure we are comparing similar funds. This tight bandwidth should minimize concerns that the funds above the threshold are systematically different from funds just below.

We further control for any differences between the treatment (\(Above_{i,q}^{\text{Threshold}} = 1\)) and control (\(Above_{i,q}^{\text{Threshold}} = 0\)) funds in two ways. First, by including either fund style fixed effects or year-quarter fixed effects or both, or fund style \(\times\) year-quarter fixed effects. Second, we further match treatment and control firms using the coarsened exact matching method proposed by Iacus, King, and Porro (2012). We match on three dimensions: fund style \(\times\) year-quarter bins (exactly), past quarter return, and past quarter flow. We use Sturje’s rule to coarsen the return and flow variables into bins for matching. After constructing the matched sample, we run a weighted least squares regression with weights determined according to Iacus et al. (2012). Treatment funds receive a weight of one and the control funds receive a weight of \(\frac{1}{Z}\), where \(Z\) is the number of control funds matched to a specific treatment fund.

Our second specification uses a regression discontinuity design. We employ a local
polynomial regression around the AUM threshold. The independent variable is the fund’s assets under management and the cutoff is the AUM threshold.

\[Y_{i,q+1 \text{ to } q+n} = \alpha + \beta \cdot Above_{i,q}^{Threshold} \]

\[+ \sum_{p=1}^{k} \left(\gamma_{0,p} \cdot (AUM_{i,q} - T)^p + \gamma_{1,p} \cdot Above_{i,q}^{Threshold} \cdot (T - AUM_{i,q})^p \right) + \epsilon_{i,q+1}. \]

Recall that \(A_{i,q} \) is equal to one if the fund size is above the threshold and zero otherwise. The local polynomials of \((AUM_{i,q} - T)^p\) for \(p = 1, \cdots, k \) continuously converge to zero around the threshold of \(T \). Hence, \(\beta \) reflects the discontinuity in the local effect of \(AUM_{i,q} \) around the threshold of \(T \) on the variable \(Y \) of interest.\(^8\) Once again, the identifying assumption is that there are no systematic unobserved differences between the funds just above or just below the threshold.

3 Data and Sample

We obtained our data on fund performance and characteristics from eVestment. eVestment is a “data, analytics and research platform serving the global institutional investment community.”\(^9\) Institutional investors and investment consultants use the eVestment website and database to analyze funds and make investment decisions or recommendations. Both traditional and alternative investment funds self-report information on performance, assets under management, fund strategy, and a number of other fund characteristics to eVestment. eVestment takes a number of steps to ensure the accuracy of the data.\(^10\)

\(^8\)Calonico, Cattaneo, and Titiunik (2014) propose a method to estimate and test RDD such as (2.3). We thank to the authors for providing the Stata code. The bandwidth and the order of polynomials are optimally chosen by the criteria proposed in Calonico et al.. The kernel function is triangular (Cheng, Fan, and Marron, 1997).

\(^9\)https://www.evestment.com

\(^10\)We also checked that the holdings data in eVestment is consistent with the holdings data in the CRSP Mutual Fund Database for a random selection of funds.
on traditional U.S. equity and fixed income funds.

We address a number of potential biases that can be present in investment fund data. eVestment does not drop funds from the database after they delist, which minimizes concerns of a survivorship bias.11 To minimize concerns of backfill bias, we drop all observations occurring before the fund’s initial reporting date. We are allowed to use only the data after eVestment transferred to a new database system in the second quarter of 2007 and, hence, we drop all fund observations before this date. Therefore, our sample starts in Q2 2007 and goes through Q4 2016.

In addition to the fund performance and characteristics data, we obtained proprietary data on the usage of the eVestment platform. In particular, users of the eVestment website leave interesting records when they use the eVestment platform to build datasets for analysis or to look up specific funds for further review. The data covers these two main activities. Specifically, the data includes: (1) fund page views each month (across all user types), and (2) the screens used by ICs when creating datasets for analysis. The page views data covers all traditional, U.S. equity and fixed income funds over the time period Q1 2008 to Q4 2016. In Figure 5, we plot the average page views each quarter over time. The average fund experiences around 20 page views per quarter during our sample. Within equity funds, we find large capitalization and small capitalization funds experience slightly more attention than all capitalization and mid-capitalization funds. We also find equity funds are viewed more than fixed income funds on average. There is an increase in usage in the first quarter of 2010 with average page views nearly doubling between the last quarter of 2009 and first quarter of 2010. We use time fixed effects in the majority of our analysis, so this time trend should not affect our results.

11 Although survivorship bias is not an issue, we cannot eliminate an “extinction bias” in the data due to funds delisting. Funds delist for two main reasons: (1) they are no longer taking on more capital or (2) they are shutting down. Depending on the reason, this can lead to very different biases in the data (Getmansky, Lo, and Makarov (2004)). Any potential extinction bias in the data should not affect our results since we are not interested in the average behavior of funds and any bias should not be systematically correlated with the explanatory variables of interest. This is especially unlikely in our analysis of fund behavior around specific AUM thresholds.
The screen data covers all return-related and assets under management-related screens from September 10, 2012 to November 2, 2017.12 Screens on other criteria like manager tenure, fund location, fees, etc. are not included in the dataset. eVestment personnel claim that return and AUM screens are by far the most frequently used. A screen observation consists of the relevant aspect (e.g., fund assets under management), an operator (e.g., \(\geq \)), the threshold used (e.g., $100M), the date of the screen, a fund universe (e.g., U.S. large cap value funds), and, for screens on excess returns over a benchmark, the benchmark index chosen. We do not observe if screens are linked through the same database query. For example, if an IC screens on both AUM and one year return in a query, we see each screen as a separate observation and cannot link them. Additionally, there is no information on the IC conducting the screening (not even through anonymized identifiers), meaning we cannot examine variation across ICs or variation in IC behavior over time.

In Figure 6, we provide a screenshot of the eVestment webpage used to build a data set of funds for analysis. A critical feature of the eVestment platform is that users are relatively unconstrained in choosing the threshold value. The user must manually input or choose on a slider the threshold value. There is not a small set of drop down menu choices. This set-up allows us to interpret the clustering of thresholds as being driven by the users decision making process and not due to a feature of the eVestment website.

The main dependent variables in our sample are: fund page views over the next four quarters \((Views_{q+1 \text{ to } q+4}) \), fund flow over the next four quarters \((Flow_{q+1 \text{ to } q+4}) \), and next quarter return \((r_{q+1}) \). The fund flow is calculated as the total dollar flow over four quarters from one quarter ahead \((q + 1) \) to four quarters ahead \((q + 4) \) divided by the initial AUM (i.e., AUM at the end of the quarter \(q \)). The main explanatory variables are a dummy variable equal to one if the fund’s AUM at the end of quarter \(q \) is above $500MM \((Above_{q}^{500}) \) and the fund’s elimination rate conditional on its AUM at the end of quarter \(q \) \((ElimRate_{q}) \). We calculate the elimination rate by dividing the number of AUM screens the fund would pass

12In the appendix, we plot the number of screens by year-quarter. There is no discernible time trend.
based on its AUM in quarter q by the total number of AUM screens in our screen sample. We use the full sample of AUM screens to calculate the elimination rate for each dollar amount of AUM.

We modify the sample and variables in two ways. First, we drop funds with AUM greater than $2.5B because there is almost no variation in the probability a fund is eliminated by an AUM screen beyond $2.5B. This minimizes concerns of outliers (in terms of AUM) affecting our results. Second, we Winsorize all flow and views variables at the 1% level, again to minimize concerns of outliers driving our results.

We provide summary statistics for the variables used in our regression analysis in Table 1. The summary statistics for the full sample are in Panel A. In Panel B (Panel C), we report the summary statistics for the funds within the $450MM to $500MM ($500MM to $550MM) AUM range. The three control variables are fund-level AUM (AUM_q), return in quarter q (Ret_q) and flow in quarter q ($Flow_q$). Examining the means of the dependent variables for funds just below the $500MM threshold to those just above, we see funds just above the threshold receive more page views, greater flows and earn lower returns on average, which is in line with our predictions. We formalize the analysis and test for statistical significance across the treatment and control groups in Section 4.3. Importantly, the two main control variables’ (Ret_q and $Flow_q$) means are similar and not statistically significantly different across the treatment (above $500MM) and control (below $500MM) groups. In some of our analysis, we match funds based on these variables as well as fund style \times year-quarter bins to ensure the treatment and control samples are similar on these important dimensions. In the Appendix, we provide a histogram of funds by AUM near the $500M threshold. We find no evidence there is a discontinuous change in the proportion of funds on either side of the $500M threshold, which minimizes concerns that fund managers are somehow selecting to be in either the treatment or control sample.

In the full sample, the average fund is eliminated by 51% of the AUM screens. This is a
significant reduction in candidate funds. Examining the funds around the $500MM threshold, we see funds just below the $500MM threshold are eliminated by 43.9% of screens, while funds just above are eliminated by only 29% of screens. There is almost no variation in the elimination rate on either side of the $500MM threshold since ICs almost never use a threshold value between $450MM and $550MM that is not equal to $500MM. This large discontinuity in the probability of elimination for otherwise similar funds allows us to estimate a causal impact of screening behavior on future fund outcomes.

4 Results

4.1 Investment Consultant Screening Behavior

We begin our analysis by presenting basic facts on investment consultant screening behavior. In Figure 1, we document the frequency each screen-type is used. For return-based screens, the user can screen on either fund return or fund excess return over a benchmark. The consultants are able to choose the benchmark used. The AUM screens are separated into four types: firm-level total AUM, firm-level institutional AUM, fund-level total AUM and fund-level institutional AUM. Return criteria are used more frequently than AUM criteria with fund returns the most commonly used criteria. Fund return screens account for 29% of the sample, excess return screens 27% of the sample and AUM screens 44% of the sample. The most commonly used AUM criteria are fund-level total AUM screens. Screens on fund-level total AUM are used almost twice as much as firm-level total AUM screens.

We find some heterogeneity in the direction of AUM screens. 90% of AUM screens eliminate funds below a certain AUM threshold, while the remainder eliminate funds above

\[\text{In Appendix A, we propose a simple fund search model which rationalizes the observed screening behavior. In particular, our model predicts that investment consultants will screen funds using the characteristic(s) most informative of fund manager skill, as stated in Proposition A.1. We can, therefore, infer from consultant screens the characteristics they believe are most informative of fund manager skill (within the set of characteristics that are relatively “costless” to observe).}\]
the threshold (results not presented). A subset of ICs appear to have a preference for smaller funds. These ICs may be looking for more flexible managers with more unique strategies. For example, it is becoming prevalent for public plans to allocate some portion of their portfolio to emerging managers.

Next, we examine the type of thresholds used to screen on returns. ICs can use a numerical value threshold (e.g., 0%) or a percentile rank within a fund universe. In Figure 7, we provide the frequencies that each type of threshold is used. For excess returns over the benchmark, a numerical value threshold is used more frequently than percentile rank. For raw returns, percentile rank is used much more frequently. Only 7.6% of the time are raw returns screened on numerical values. We find that over 97% of the time, funds with returns below the threshold value are eliminated (i.e., the \geq or $>$ operator is used). These results confirm the notion that relative performance compared to a benchmark or your peers is much more important to ICs than raw performance.

Another interesting dimension is the time horizon investment consultants use to evaluate fund managers. In Figure 8, we plot the frequency each time horizon is used for screening on return performance. We find ICs are most likely to use medium-term performance to screen investments. The three year and five year horizons are used 30% and 32% of the time, respectively. Very short time horizons are used frequently as well with one year and calendar year screens accounting for close to 15% of return screens. Longer time horizons are much less frequently used with time horizons greater than five years combining for fewer screens than the five year horizon alone. Although investment consultants usually make recommendations to “long-term” investors, their screening behavior indicates they care about short- or medium-term performance in their fund selection process. It is unclear why there is a relatively high usage of screens at three and five year horizons compared to two, four or six year horizons. Most likely the usage of three and five year horizons is due to norms that have developed in the industry rather than differences in the relative informativeness across the

14 A 3-year horizon is often considered a “market cycle” in the fund industry.
different horizons.

The screening frequencies indicate past returns and assets under management are important signals to ICs. There are a number of potential explanations for why ICs screen on these dimensions. Most likely, ICs believe past returns and current AUM are positively correlated with fund manager skill and, potentially, future performance. For example, the model by Berk and Green (2004) shows how investors’ beliefs about fund manager skill will evolve with past performance and current AUM. Additionally, it is possible ICs use AUM to proxy for other important fund characteristics that are more difficult to observe (e.g., operational risk).

In Appendix B, we provide a number of additional plots examining the seasonality in IC searches (as proxied by screening) and the performance “as of” date criteria. We find evidence of seasonality in both. IC search activity is fairly uniform throughout the year except there are spikes in screen activity in June and August. We find that fund information as of the end of the year (fourth quarter) is the most commonly used to screen funds with fourth quarter screens used approximately 20% more than the next most frequent quarter. Lastly, we find there is a lag between performance and IC search with a median of three months between the performance “as of” date and screen date. This lag combined with the time it takes to further analyze the data, make a final decision, and implement the decision indicates there should be a multi-quarter lag between the fund’s reporting of information and its effect on fund attention and flows. In our analysis of fund outcomes, we will examine attention and flows over the next four quarters to account for this potential lag.

4.2 Threshold Values

In this section, we examine the distribution of threshold values used by investment consultants. In Figure 2, we overlay the threshold frequencies for AUM screens on the probability a fund is eliminated conditional on its current AUM and conditional on an AUM screen being used. Two important observations stand out from this figure. First, ICs eliminate
small funds at a significant rate. A fund with AUM of $10M has over an 80% chance of being eliminated. The elimination rate is decreasing in AUM until the $1B threshold, after which the probability of elimination levels out around 15%.15

Second, ICs frequently use round base 10 numbers as the threshold value. The $100M, $500MM and $1B threshold values are used 13%, 15% and 20% of the time, respectively, while values within $5M (e.g., $95M-$105M) of these thresholds are used zero times.

These empirical findings are consistent with the predicted behavior of our simple fund choice model presented in Appendix A. We show that screening out funds below a certain threshold may be an optimal decision making procedure for investment consultants subject to evaluation costs. We also show that if investment consultants have a preference for cognitive reference numbers, there can potentially be significant commonality in threshold values at cognitive reference numbers (as in Figure A.1).

In Figures 3 and 4, we present similar plots for raw return percentile rank thresholds and excess return numerical value thresholds, respectively. Examining the raw return percentile rank thresholds, we see funds with a low past return ranking experience a very high elimination probability. Funds in the 5th percentile have an elimination probability near 100% and all funds below the 25th percentile have an elimination probability over 90%. There is significant clustering of threshold values at the 25th and 50th percentiles. At the 50th percentile, the elimination rate declines by over 50 percentage points. This creates a large discontinuity in the number of IC choice sets a fund enters into near this threshold. Surprisingly, screens on extremely good performance are not as common with zero screens at the 90th percentile and around 9% at the 95th percentile. This indicates that ICs do not necessarily chase after the top performers.

We find very similar patterns in the excess return numerical value thresholds. Funds with excess returns less than zero are eliminated over 90% of the time. The elimination rate is

15Because some users use AUM screens to select funds below thresholds, the relation between fund AUM and elimination probability does not need to be monotonic.
decreasing in the excess return with large drops in the elimination rate at specific values. The 0% threshold is used a significant amount, accounting for close to 50% of the screens. There is also clustering at the 0.5%, 1%, 1.5% and 2% threshold values. Once again, values near the commonly used thresholds are rarely used.

The clustering of thresholds at specific values is unlikely to be the outcome of investment consultants selecting their optimal threshold value. Take the 50th percentile rank threshold as an example. In nearly every period, the 50th percentile rank is the most frequently used threshold. It is possible that in a certain period the 50th percentile rank was the optimal threshold for a number of ICs, but it is nearly impossible that the 50th percentile rank was the optimal threshold every period for a number of ICs. If an IC searches for the optimal threshold in each period, the IC will likely have a different optimal threshold value each time. The number of funds and the evaluation costs are constantly changing, which should change the optimal threshold value.

The clustering of threshold values is consistent with consultants selecting cognitive reference numbers as threshold values. It is important to highlight that our results do not imply that the consultants select random thresholds among cognitive reference numbers. Although ICs may be subject to a cognitive reference number bias, their choice can be partially rational if they select cognitive reference numbers near the optimal threshold value (as in Proposition A.4).

4.3 Elimination and Fund Outcomes

Our goal for the next set of analysis is to examine the impact of ICs screening behavior on fund outcomes. Specifically, we examine if funds with lower elimination rates experience greater attention, as measured by page views, and greater fund flows. We focus our analysis on AUM screens for this set of tests.16

16We are unable to examine the percentile rank or excess return thresholds due to an inability to precisely recreate these values. We cannot examine performance percentile ranks because we do not have the historical
We begin our analysis by regressing fund page views over the next four quarters on elimination rate according to Equation (2.1). The elimination rate is calculated using the fund’s AUM at the end of the most recent quarter. A negative coefficient represents a decrease in page views as the elimination rate increases.

We present the results in Table 2. We find funds that are eliminated by AUM screens at a higher rate receive less attention over the next four quarters. The coefficient is between -31 to -36 across all specifications and is unaffected by controlling for time fixed effects, style fixed effects or time × style fixed effects. We cluster standard errors at the fund and year-quarter level and find the coefficient has a \(p \)-value < 0.01 in all specifications. The relationship between screen behavior and measured attention is significant. In the most stringent specification (Column (5)), a 10 percentage point increase in the elimination rate is associated with an average decline in page views of 3.6 views. For the median fund, this is an approximately 11.25% reduction in page views. These results highlight the strong correlation between elimination rates and attention after controlling for the effect of assets under management.

We next examine if elimination rates are associated with fund flows. We conduct similar tests with the percentage flow over the next four quarters as the dependent variable of interest. Results are presented in Table 3. We find a strong negative relationship between the elimination rate and future fund flows. The coefficient is between -0.57 and -0.61 and is significant at the 1% level in all specifications. A ten percentage points increase in the elimination rate is associated with 5.7 to 6.1 percentage points lower flows on average. Considering the large changes in elimination rate near certain threshold values, there are potentially significant different outcomes for otherwise similar funds right around these thresholds.

The previous tests examine the correlation between a fund’s elimination rate and future universe classifications for funds. We cannot use excess returns because we do not know eVestment’s excess return calculation process (e.g., which fund is used, are gross/net return used, etc.). Additionally, this requires an assignment of fund to benchmark, which adds additional complexity.
attention and flows. There are potentially a number of omitted variables correlated with the elimination rate that are also related to attention and flows. In our next set of tests, we address these concerns by examining fund outcomes right around a commonly used AUM threshold, the $500MM threshold. These tests also provide estimates of the effect the use of a cognitive reference number has on fund outcomes. We chose the $500MM threshold because it is far enough away from the other commonly used thresholds that there should not be an overlapping effect (unlike the $100M threshold), yet the funds are still small enough to not already be in a vast majority of ICs’ consideration set (like the $1B or $2B thresholds).17

We first examine the effect of being above the $500MM threshold on page views. We only include funds within $50M of the threshold ($450MM-$550MM) in this analysis. The regression is specified according to Equation (2.2) with page views over the next four quarters regressed on a dummy variable equal to one if the fund’s AUM is greater than $500MM. A positive coefficient represents a positive effect from the sharp decline in the fund elimination rate (i.e., surviving more screens). The identifying assumption is that funds just below the $500MM threshold are similar to funds just above the $500MM threshold along other relevant dimensions.

Results are presented in Table 4. We find a significant effect of being above the $500MM threshold on future page views with coefficient estimates between 8.4 and 11.2. This corresponds to a more than 20% increase in page views for the median fund. In columns (1)-(4), we control for combinations of fund style and year-quarter fixed effects. In column (4), we include style × year-quarter fixed effects. This specification removes any common variation across funds of the same style over the same time period. After including these fixed effects, it is highly unlikely that there are omitted variables correlated with the above $500MM dummy variable that are driving the results. Even so, we next use coarsened exact

17In Appendix B, we provide the results for the $1B threshold and find no effect likely because these funds have already entered most ICs consideration set. Additionally, although there is a stark decrease in the elimination rate as the $1B threshold is crossed, funds just below the threshold still survive close to 80% of screens.
matching to ensure the sample of treatment (above $500MM) and control funds (below $500MM) are similar along relevant dimensions. In column (5), we exact match within style × year-quarter bins. In columns (6) and (7), we additionally match on last quarter’s flow and last quarter’s return, respectively. In column (8), we match on all three dimensions. Both continuous variables are coarsened using Sturge’s rule. Across all specifications, the coefficient remains economically and statistically significant. Funds just above the commonly used $500MM threshold receive significantly more attention in the future compared to similar funds just below the threshold.

In Table 5, we conduct similar analysis on future fund flows. We find a difference in fund flows over the next four quarters of between 5.1 and 8.8 percentage points for funds just above the $500MM threshold compared to funds just below the threshold. Examining the results in columns (1)-(8), we see the coefficient is just above 5 percent in all specifications and significant at the 10 percent level in all specifications, but one. The specification with style × year-quarter fixed effects estimates a coefficient of 5.1% with a \(p \)-value of 0.104.\(^{18}\) Although the results become statistically weaker when we include a large number of fixed effects, the economic magnitude of the coefficient stays relatively stable. We next match funds in the treatment and control groups to ensure we are comparing similar funds across the treatment and control groups. The more stringent our matching method, the more economically and statistically significant the results. This provides confidence that our results are not driven by differences in funds across treatment and control groups. In column (8), we match on style × year-quarter, last quarter return and last quarter flow, and find a coefficient of 8.8% with a \(p \)-value of 0.01. There is a large and significant causal impact of the $500MM threshold on future fund flows.

Do we see similar patterns at less commonly used thresholds? No. We conduct placebo tests around the $400M, $600M and $700M thresholds. We use the same regression specifications as in the previous analysis and find no robustly significant effects of being above these threshold

\(^{18}\)We hope our readers do not suffer from a 10% cognitive reference number bias!
values on page views or fund flows (results presented in Appendix B). These results provide further comfort that the effect documented is due to screening behavior and not an omitted variable. The odds there is an omitted variable that is driving the $500MM threshold result, that does not affect funds around the $400M, $600M or $700M thresholds is extremely low.

Our final set of analysis uses a regression discontinuity design to estimate the effect of the $500MM threshold on fund page views and fund flows. The regression specification is Equation (2.3). For these tests, we do not pre-specify a bandwidth, instead, the bandwidth is optimally chosen (see section 2 for further discussion). We present the coefficient estimates with the 99% confidence intervals for page views and fund flows in Figures 9 and 10, respectively. We also present the estimates for the $400M, $600M and $700M threshold coefficients.Examining the page views result, we see the $500MM threshold coefficient estimate is two to three times larger than the other thresholds and is the only significant coefficient estimate. The $600M threshold estimate is actually negative and insignificant. Similarly, the placebo thresholds have a near zero effect on fund flows, while the $500MM threshold has a significant coefficient estimate close to 10% of AUM. Taken together, the $500MM threshold has a significant impact on fund attention and flows with no effect at the lesser used thresholds. IC screening behavior has a causal impact on fund outcomes. These results highlight the effect the use of a common cognitive reference number in investor decision making can have on fund outcomes.

4.4 Elimination and Fund Behavior

We next examine the behavior of funds around the $500MM threshold. We begin by examining if funds just above the commonly used $500MM threshold earn higher returns in the future. If this is the case, then the common use of the $500MM threshold may be justified. Our tests regress fund return in the next quarter on the above $500MM dummy variable. We examine the next quarter return to mitigate concerns of future fund flows affecting future performance. We present the results in Table 6. The results do not indicate funds above the
$500MM outperform, instead they underperform. The coefficient ranges between -0.001 and -0.009 and the statistical significance depends on the specification. Column (8) presents the most robust specification with matching on style \times year-quarter fixed effects, past quarter return and past quarter flow. The coefficient is -0.002 (20 basis points) and has a p-value of 0.04. In Appendix B, we examine the placebo thresholds and find no effect. Using the RDD specification we find similar results (see Figure 11): funds just above the $500MM threshold underperform funds just below the threshold.

We examine potential explanations for the observed underperformance of funds just above the threshold. One explanation is that fund performance decreases with the increase in fund size as in Berk and Green (2004). However, given the estimates on the diseconomies of fund size in the literature, it is unlikely the effect would be of the magnitude that we observe. For example, if we apply the estimate by Zhu (2018), a sudden 10% increase in size for a fund around $500MM lowers fund returns roughly by 1.2bp/month.

Another explanation is that managers below the threshold are responding to the incentives created by the use of a common threshold and take actions to increase the probability they pass the $500MM threshold value. Since fund fees are a percentage of AUM, the future fees funds collect should experience a discontinuous jump at the $500MM threshold on average with the increase in flows. This creates a strong incentive to cross the threshold. This explanation requires fund managers to be aware of the effect of crossing the threshold on future fund flows, which may or may not be the case.

We examine if funds take on different risks or charge different fees above versus below the threshold. To examine the risk-taking of funds, we test for differences in systematic risks, return standard deviation, return skewness and return kurtosis using holdings data. Results are presented in Table 7. We find no effect of the $500MM threshold on these values. This is potentially due to measurement error in the risk measures since the holdings data is not as well populated as the other variables of interest or it could be due to managers window

\footnote{The results are qualitatively similar if we examine return over the next four quarters.}
dressing their holdings so that any excess risk taking is not apparent to investors. Examining potential differences in fees, we find no evidence this is the case. The (unreported) results are similar using gross returns instead of net returns and we do not find evidence of fee differentials around the threshold.20

Alternatively, fund managers just below the $500MM threshold could be adding alpha to earn slightly higher returns or manipulating their performance. We cannot distinguish between these alternatives.

Overall, these tests rule out the possibility that ICs screen using the $500MM threshold because it is a significant predictor of future fund performance.

5 Discussion

The use of heuristics in the investment decision process is partially inconsistent with perfectly rational-agent models of investor behavior. This does not imply that the use of heuristics is a poor strategy for ICs to use. It is possible that the simple heuristics documented in this paper outperform or perform no worse than more complex decision making algorithms out-of-sample. In a number of other contexts, heuristics have actually been shown to outperform more complex strategies (Gigerenzer and Gaismaier (2011)). Considering the inability of academic researchers to document predictability in mutual fund performance, it may be justifiable to use a simple rule for fund selection, especially if effort or complexity is costly. On the other hand, it is also possible these heuristics underperform or perform no better than an even simpler strategy of investing in low fee index funds. Because we do not know the true objective function of ICs, it is infeasible to compare the performance of various strategies in the present study. Our aim with this paper is to provide evidence on the use of heuristics by a set of sophisticated and economically-important agents, and to

20These tests also further justify the assumption in our main tests that funds just above versus just below the threshold are similar on a number of dimensions.
show that heuristics affect the flow of capital in the economy. More detailed analysis on the relative performance of the documented decision making processes is left to future work.

6 Conclusion

We provide direct evidence on how investors process information in making an investment decision. Specifically, we analyze the information processing behavior of investment consultants (ICs), a set of major financial decision makers that advise trillions of dollars of investment capital in the global economy. We show they apply screens in the first stage of analysis that on average drop over 50% of potential funds from consideration. The use of screens is consistent with a consider-then-choose decision making heuristic, in which the decision maker first forms a much smaller consideration set of funds, then evaluates the options that remain in the consideration set. The consider-then-choose heuristic can be optimal if the decision maker faces non-trivial costs to evaluate the potential options.

By examining their screening behavior, we are able to document the fund characteristics that ICs find most useful in forming their consideration sets. The most common screens are on fund-level AUM and 3-year and 5-year past returns. We find they typically choose cognitive reference numbers as threshold values, which leads to significant commonality in the values chosen. ICs frequently use base 5 or base 10 numbers for AUM threshold values, zero percent for excess return over a benchmark threshold values, and quartiles for return percentile rank threshold values. The clustering of screens at specific thresholds leads to large discontinuities in the probability of a fund entering a consideration set at these values.

We show significant correlations between the probability a fund is eliminated by a screen and future fund attention and fund flows. Examining fund outcomes around the commonly used $500MM AUM threshold, we provide evidence of a causal effect of screening behavior on future fund attention and flows. These results highlight the significant impact the use of
cognitive reference numbers and the consider-then-choose heuristic by ICs can have on fund outcomes.

We believe we are the first to document the use of investment screens and consideration sets by investment consultants and show that they have a causal effect on fund flows. The behavior documented in this paper is likely taking place in other financial decision making contexts where investors are incapable of processing all potentially relevant pieces of information. With the emergence of detailed information on individuals’ decisions in the big data era, we expect this line of research, which directly examines the processes and steps individuals’ use to make investment decisions, to become more prevalent.
References

Caplin, Andrew, Mark Dean, and John Leahy, forthcoming, Rational inattention, optimal consideration sets and stochastic choice, *Review of Economic Studies*.

Chava, Sudheer, and Vincent W Yao, 2017, Cognitive reference points, the left-digit effect, and clustering in housing markets, *Working paper*.

Electronic copy available at: https://ssrn.com/abstract=3277424

Pope, Devin, and Uri Simonsohn, 2010, Round Numbers as Goals, Psychological Science 22, 71–79.

32

7 Tables & Figures

Figure 1: Screen Frequency by Type
This figure plots the frequency of each type of screen in our data. AUM screens can be at the firm or fund level (indicated in parentheses). “AUM Inst.” indicates the screen is on the level of institutional AUM.
Figure 2: Fund-Level AUM Thresholds
This figure plots the frequency of fund-level assets under management thresholds and the probability of elimination conditional on a fund-level assets under management screen being used.

Figure 3: Percentile Rank Thresholds
This figure plots the frequency of return percentile rank thresholds and the probability of elimination conditional on a percentile rank threshold being used.
Figure 4: Excess Return Value Thresholds
This figure plots the frequency of numerical value excess return thresholds and the probability of elimination conditional on an excess return numerical threshold being used. Range: -2.1% to 2.1%.

Figure 5: Average Views Over Time
This figure plots the average number of views per fund each quarter
Figure 6: Screenshot of the eVestment platform
This figure presents a screenshot of the eVestment website.
Figure 7: Return Threshold Types
This figure plots the frequency of return threshold types.

Figure 8: Return Time Horizon
This figure plots the frequency of the time horizons used for return screens.
Figure 9: Page Views RDD Estimates
This figure plots the coefficient estimates capturing the effect of being above specific AUM thresholds on future fund attention. The dependent variable is page views over the next four quarters. The regression specification is a regression-discontinuity design following Equation (2.3). Coefficient estimates and the 99% confidence intervals are plotted for the $500MM threshold and three placebo thresholds: $400MM, $600MM, and $700MM.
Figure 10: Flows RDD Estimates
This figure plots the coefficient estimates capturing the effect of being above specific AUM thresholds on future fund flows. The dependent variable is percentage fund flow over the next four quarters. The regression specification is a regression-discontinuity design following Equation (2.3). Coefficient estimates and the 99% confidence intervals are plotted for the $500MM threshold and three placebo thresholds: $400MM, $600MM, and $700MM.
Figure 11: Returns RDD Estimates
This figure plots the coefficient estimates capturing the effect of being above specific AUM thresholds on future fund returns. The dependent variable is fund returns over the next quarter net of the average return for the fund’s style group. The regression specification is a regression-discontinuity design following Equation (2.3). Coefficient estimates and the 99% confidence intervals are plotted for the $500MM threshold and three placebo thresholds: $400MM, $600MM, and $700MM.
Table 1: Summary Statistics

This table presents the sample summary statistics. $\text{Views}_{q+1 \to q+4}$ is the fund’s total number of page views from quarter $q + 1$ to $q + 4$, $\text{Flow}_{q+1 \to q+4}$ is the fund’s flow from quarter $q + 1$ to $q + 4$ as a percentage of assets under management in quarter q, Ret_{q+1} is the fund’s return in quarter $q + 1$, AUM_q is the fund’s assets under management (in millions) at the end of quarter q, ElimRate_q is the probability a fund is eliminated by an AUM screen conditional on its assets under management in quarter q, Ret_q is the fund’s return in quarter q, Flow_q is the fund’s flow in quarter q as a percentage of its assets under management in quarter $q - 1$. Panel A presents summary statistics for the full sample. Panel B (Panel C) presents summary statistics for all funds with assets under management between 450MM and 500MM (500MM and 550MM).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Panel A: Full Sample</th>
<th>Panel B: Funds With AUM 450MM-500MM</th>
<th>Panel C: Funds With AUM 500MM-550MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Views}_{q+1 \to q+4}$</td>
<td>48,723</td>
<td>1,198</td>
<td>1,103</td>
</tr>
<tr>
<td>$\text{Flow}_{q+1 \to q+4}$</td>
<td>60,238</td>
<td>1,510</td>
<td>1,362</td>
</tr>
<tr>
<td>Ret_{q+1}</td>
<td>78,539</td>
<td>1,815</td>
<td>1,686</td>
</tr>
<tr>
<td>AUM_q</td>
<td>82,866</td>
<td>1,909</td>
<td>1,759</td>
</tr>
<tr>
<td>ElimRate_q</td>
<td></td>
<td>1,909</td>
<td>1,759</td>
</tr>
<tr>
<td>Ret_q</td>
<td>82,866</td>
<td>1,909</td>
<td>1,759</td>
</tr>
<tr>
<td>Flow_q</td>
<td>73,708</td>
<td>1,780</td>
<td>1,630</td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=3277424
Table 2: Page Views and Elimination Rate

This table presents regression results examining the relationship between fund elimination rates and future page views. The dependent variable is the fund’s page views over the next four quarters \((View_{q+1} \text{ to } q+4) \). \(ElimRate \) is the probability a fund is eliminated by an AUM screen conditional on its assets under management in quarter \(q \). \(Log(AUM) \) is the logarithm of the fund’s assets under management (in millions) at the end of quarter \(q \). \(Ret \) is the fund’s past quarter return (quarter \(q \)). Standard errors are double clustered at the fund and Year-Quarter (YQ) level.

<table>
<thead>
<tr>
<th></th>
<th>(1) Views</th>
<th>(2) Views</th>
<th>(3) Views</th>
<th>(4) Views</th>
<th>(5) Views</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ElimRate)</td>
<td>-33.628***</td>
<td>-30.792***</td>
<td>-32.106***</td>
<td>-36.209***</td>
<td>-36.331***</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>(Log(AUM))</td>
<td>12.977***</td>
<td>12.189***</td>
<td>12.286***</td>
<td>11.547***</td>
<td>11.635***</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>(Ret)</td>
<td></td>
<td></td>
<td></td>
<td>60.018***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>45946</td>
<td>46901</td>
<td>45946</td>
<td>45782</td>
<td>45782</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.839</td>
<td>0.842</td>
<td>0.841</td>
<td>0.853</td>
<td>0.853</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Fund, Style</td>
<td>Fund, YQ</td>
<td>Fund, Style, YQ</td>
<td>Fund, Style×YQ</td>
<td>Fund, Style×YQ</td>
</tr>
</tbody>
</table>

\(p \)-values in parentheses
* \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \)

Electronic copy available at: https://ssrn.com/abstract=3277424
Table 3: Flows and Elimination Rate

This table presents regression results examining the relationship between fund elimination rates and future flows. The dependent variable is the fund’s percentage flow over the next four quarters. *ElimRate* is the probability a fund is eliminated by an AUM screen conditional on its assets under management in quarter *q*. *Log(AUM)* is the logarithm of the fund’s assets under management (in millions) at the end of quarter *q*. *Ret* is the fund’s past quarter return (quarter *q*). Standard errors are double clustered at the fund and Year-Quarter (YQ) level.

<table>
<thead>
<tr>
<th></th>
<th>(1) Flow</th>
<th>(2) Flow</th>
<th>(3) Flow</th>
<th>(4) Flow</th>
<th>(5) Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>ElimRate</td>
<td>-0.611***</td>
<td>-0.577***</td>
<td>-0.573***</td>
<td>-0.570***</td>
<td>-0.572***</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Log(AUM)</td>
<td>-0.670***</td>
<td>-0.697***</td>
<td>-0.690***</td>
<td>-0.699***</td>
<td>-0.697***</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Ret</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.214***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.00)</td>
</tr>
<tr>
<td>Observations</td>
<td>57782</td>
<td>59029</td>
<td>57782</td>
<td>57621</td>
<td>57621</td>
</tr>
<tr>
<td>R²</td>
<td>0.444</td>
<td>0.447</td>
<td>0.448</td>
<td>0.468</td>
<td>0.469</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Fund, Style</td>
<td>Fund, YQ</td>
<td>Fund, Style, YQ</td>
<td>Fund, Style×YQ</td>
<td>Fund, Style×YQ</td>
</tr>
</tbody>
</table>

p-values in parentheses

* *p* < 0.10, ** *p* < 0.05, *** *p* < 0.01

Electronic copy available at: https://ssrn.com/abstract=3277424
Table 4: Page Views

This table presents regression results examining the relationship between being the above $500MM threshold and future page views. We only include funds within $50M of the threshold ($450MM-$550MM). The dependent variable is the fund’s page views over the next four quarters. Columns (1)-(4) are OLS regressions with various sets of fixed effects. In columns (5)-(8), treatment and control are matched on Style x Year-Quarter (YQ) buckets (column (5)), Style x Year-Quarter (YQ) buckets and last quarter’s flow (column (6)), Style x Year-Quarter (YQ) buckets and last quarter’s return (column (7)), Style x Year-Quarter (YQ) buckets, last quarter’s flow and last quarter’s return (column (8)). Style x Year-Quarter (YQ) buckets are matched exactly and the Sturje’s rule is used to coarsen last quarter’s flow and last quarter’s return. Standard errors are clustered at the Year-Quarter (YQ) level.

<table>
<thead>
<tr>
<th></th>
<th>Views</th>
<th>Views</th>
<th>Views</th>
<th>Views</th>
<th>Views</th>
<th>Views</th>
<th>Views</th>
<th>Views</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.03)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Observations</td>
<td>2235</td>
<td>2301</td>
<td>2235</td>
<td>1986</td>
<td>1925</td>
<td>1384</td>
<td>1707</td>
<td>1174</td>
</tr>
<tr>
<td>R^2</td>
<td>0.208</td>
<td>0.023</td>
<td>0.224</td>
<td>0.311</td>
<td>0.003</td>
<td>0.005</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Style</td>
<td>YQ</td>
<td>Style</td>
<td>YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flow$_q$</td>
<td>Ret$_q$</td>
<td>Flow$_q$, Ret$_q$</td>
<td></td>
</tr>
</tbody>
</table>

p-values in parentheses

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
This table presents regression results examining the relationship between being the above $500MM threshold and future flows. We only include funds within $50M of the threshold ($450MM-$550MM). The dependent variable is the fund’s percentage flow over the next four quarters. Columns (1)-(4) are OLS regressions with various sets of fixed effects. In columns (5)-(8), treatment and control are matched on Style x Year-Quarter (YQ) buckets (column (5)), Style x Year-Quarter (YQ) buckets and last quarter’s flow (column (6)), Style x Year-Quarter (YQ) buckets and last quarter’s return (column (7)), Style x Year-Quarter (YQ) buckets, last quarter’s flow and last quarter’s return (column (8)). Style x Year-Quarter (YQ) buckets are matched exactly and the Sturge’s rule is used to coarsen last quarter’s flow and last quarter’s return. Standard errors are clustered at the Year-Quarter (YQ) level.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.065**</td>
<td>0.060*</td>
<td>0.066**</td>
<td>0.051</td>
<td>0.066**</td>
<td>0.070**</td>
<td>0.073***</td>
<td>0.088**</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.06)</td>
<td>(0.04)</td>
<td>(0.10)</td>
<td>(0.05)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Observations</td>
<td>2809</td>
<td>2872</td>
<td>2809</td>
<td>2575</td>
<td>2400</td>
<td>1730</td>
<td>2104</td>
<td>1457</td>
</tr>
<tr>
<td>R2</td>
<td>0.077</td>
<td>0.021</td>
<td>0.097</td>
<td>0.197</td>
<td>0.003</td>
<td>0.004</td>
<td>0.004</td>
<td>0.007</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Style</td>
<td>YQ</td>
<td>Style, YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
</tr>
<tr>
<td>Matching variables:</td>
<td>Style×YQ</td>
<td>Style×YQ, $Flow_q$</td>
<td>Style×YQ, Ret_q</td>
<td>Style×YQ, $Flow_q, Ret_q$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p-values in parentheses

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 6: Returns

This table presents regression results examining the relationship between being the above $500MM threshold and future returns. We only include funds within $50M of the threshold ($450MM-$550MM). The dependent variable is the fund’s return over the next quarter ($q+1$). Columns (1)-(4) are OLS regressions with various sets of fixed effects. In columns (5)-(8), treatment and control are matched on Style x Year-Quarter (YQ) buckets (column (5)), Style x Year-Quarter (YQ) buckets and last quarter’s flow (column (6)), Style x Year-Quarter (YQ) buckets and last quarter’s return (column (7)), Style x Year-Quarter (YQ) buckets, last quarter’s flow and last quarter’s return (column (8)). Style x Year-Quarter (YQ) buckets are matched exactly and the Sturje’s rule is used to coarsen last quarter’s flow and last quarter’s return. Standard errors are clustered at the Year-Quarter (YQ) level.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above500</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.009***</td>
<td>-0.005**</td>
<td>-0.005**</td>
<td>-0.001</td>
<td>-0.002*</td>
<td>-0.002**</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.17)</td>
<td>(0.08)</td>
<td>(0.04)</td>
<td>(0.18)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Observations</td>
<td>3422</td>
<td>3501</td>
<td>3422</td>
<td>3144</td>
<td>2946</td>
<td>2129</td>
<td>2585</td>
<td>1782</td>
</tr>
<tr>
<td>R^2</td>
<td>0.021</td>
<td>0.576</td>
<td>0.604</td>
<td>0.920</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Style</td>
<td>YQ</td>
<td>Style, YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td>Style×YQ, Flowq</td>
<td>Style×YQ, Retq</td>
<td>Style×YQ, Flowq, Retq</td>
</tr>
<tr>
<td>Matching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| p-values in parentheses
| * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$ |
Table 7: Risk Measures

This table presents results examining differential risk-taking around the $500MM threshold. The dependent variables are various measures of fund risk. In column (1), the dependent variable is the average variance of the fund’s holdings. Columns (2)-(8) are similar except with different risk measures (skewness, kurtosis, market capitalization (size), book-to-market ratio (BM), MKT beta (β_{MKT}), SMB beta (β_{SMB}), and HML beta (β_{HML}), respectively). Treatment and control are matched on Style x Year-Quarter (YQ) buckets, last quarter’s flow and last quarter’s return. The Style x Year-Quarter (YQ) buckets are matched exactly and the Sturje’s rule is used to coarsen last quarter’s flow and last quarter’s return. Standard errors are clustered at the Year-Quarter (YQ) level.

<table>
<thead>
<tr>
<th></th>
<th>(1) variance</th>
<th>(2) skewness</th>
<th>(3) kurtosis</th>
<th>(4) size</th>
<th>(5) BM</th>
<th>(6) β_{MKT}</th>
<th>(7) β_{SMB}</th>
<th>(8) β_{HML}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above 500</td>
<td>-0.001</td>
<td>0.004</td>
<td>-0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.021*</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.90)</td>
<td>(0.46)</td>
<td>(0.85)</td>
<td>(0.93)</td>
<td>(0.78)</td>
<td>(0.88)</td>
<td>(0.10)</td>
<td>(0.83)</td>
</tr>
<tr>
<td>Observations</td>
<td>1085</td>
<td>1085</td>
<td>1085</td>
<td>1085</td>
<td>1085</td>
<td>1085</td>
<td>1085</td>
<td>1085</td>
</tr>
<tr>
<td>R^2</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Matching variables: $Flow_q, Ret_q, Flow_q, Ret_q, Flow_q, Ret_q, Flow_q, Ret_q, Flow_q, Ret_q, Flow_q, Ret_q, Flow_q, Ret_q$

p-values in parentheses

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
A Appendix. Theoretical Motivation

We present a simple model of fund selection in which the investor incurs a cost to evaluate fund manager skill. The model builds on the evaluation cost model of consumer choice in Hauser and Wernerfelt (1990). The purpose of the model is to illustrate some of the major trade-offs faced by investors in the fund selection process. Although we frame the discussion in terms of an investor selecting a fund for investment, the model potentially applies to a number of other settings in which an agent is selecting an item from a choice set and faces evaluation costs. All proofs are provided in Section A.3.

In our model economy, there exist I funds available to an investor, indexed by $i = 1, \cdots, I$. In the first stage of the fund selection process, the investor chooses the consideration set C, which is a subset of I funds, to maximize her utility, given by

$$U(C) = A \cdot \mathbb{E} \left[\max_{i \in C} \{ \alpha_i \} \right] - n(C) \cdot K,$$ \hspace{0.5cm} (A.1)

where A is the amount of assets to be invested in the chosen fund, $n(C)$ is the number of funds in the consideration set C and K is the cost incurred by the investor to evaluate each fund in the consideration set. For each fund in consideration set C, the investor incurs evaluation cost K to learn α_i, the skill of fund i. After evaluating all funds in the consideration set, she picks the fund with maximum skill.

Before she constructs a consideration set C, she observes a public signal s_i for each fund $i = 1, \cdots, I$. The public signal s_i is associated with the skill of fund manager i, α_i. In particular, the pair of (s_i, α_i) are drawn independently across funds from a common continuous distribution of $F(s, \alpha)$. Because we consider a continuous distribution of signals, the probability of tied signals is zero. Hence, we analyze the case where each signal is distinct.\footnote{The case where signals tie can be handled by randomizing among funds with the same signal. The extended results are available upon request.} Without loss of generality, we have $s_i > s_{i+1}$ for $i = 1, \cdots, I - 1$. We assume that the public signals and alphas satisfy the conventional monotone likelihood ratio property.

Assumption 1. Let $f(s, \alpha)$ denote the joint density function of s and α. The joint distribution of the public signal of s and the fund manager’s skill α satisfies that when $s_H > s_L$ and $\alpha_H > \alpha_L$, it holds that

$$\frac{f(s_H, \alpha_H)}{f(s_H, \alpha_L)} > \frac{f(s_L, \alpha_H)}{f(s_L, \alpha_L)}.$$

This assumption assures that the signals are informative. In particular, note that the inequality in Assumption 1 can be rearranged as

$$\frac{f(s_H, \alpha_H)}{f(s_H, \alpha_H) + f(s_H, \alpha_L)} > \frac{f(s_L, \alpha_H)}{f(s_L, \alpha_H) + f(s_L, \alpha_L)}.$$

Hence, Assumption 1 states that when an investor observes two signals of s_H and s_L such that $s_H > s_L$, the high signal of s_H implies it is more likely the fund manager has the high signal.
skill, α_H, relative to the low skill of α_L, than when the low signal of s_L is observed. For the rest of this section, we take Assumption 1 as given.

The following property follows from Assumption 1.

Lemma A.1. When $s_H > s_L$, it holds that

$$\Pr(\alpha < \bar{\alpha} | s_L) > \Pr(\alpha < \bar{\alpha} | s_H).$$

The above lemma states that for a fund manager with a stronger signal of s_H, it is more likely that their skill is above a fixed level of $\bar{\alpha}$ than a fund manager with a weaker signal of s.

Before we proceed further, we provide some defense for the assumed information structure. In our model, there exists only one public signal of fund skill. However, this restriction can be partially justified by Blackwell (1951, 1953). The theorem by Blackwell states that when an investor has an option to choose an information system generated by different signals, the investor always prefers an informative signal in the following sense.

Proposition A.1. Consider a garbled version of signal s such that $g_i = f(s_i) + \varepsilon_{i,g}$, where $\varepsilon_{i,g}$ is any zero mean random variable independent of s_i for $i = 1, \cdots, I$. Then, when both signals of s and g are available, an investor does not use the information of the garbled signal g in constructing a consideration set.

Resorting to the above proposition, the signal s can be interpreted to be chosen by an investor because of its informativeness of fund manager skill.

Next, we show that the optimal choice of consideration set can be simplified into a cutoff rule - selecting all funds with signals above a certain cutoff level and dropping all other funds. Define $C_s = \{j | s_i \leq s\}$, a consideration set constructed by a cutoff-rule with the threshold of s.

Proposition A.2. There always exists an optimal consideration set C_s which maximizes $U(C)$ given by (A.1).

The intuition of the above proposition follows. Let $\tilde{\mathcal{C}}$ denote any optimal consideration set. Note that $n(\tilde{\mathcal{C}})$ is the number of funds in $\tilde{\mathcal{C}}$ and that $s_{n(\tilde{\mathcal{C}})}$ is the $n(\tilde{\mathcal{C}})$-th highest signal. Then, consider an alternative consideration set $C_{s_{n(\tilde{\mathcal{C}})}} = \{i | s_i \leq s_{n(\tilde{\mathcal{C}})}\}$.

Noting that Lemma A.1 implies that $\Pr\left(\max_{i \in \tilde{\mathcal{C}}} \{\alpha_i\} \leq \bar{\alpha}\right) = \prod_{i \in \tilde{\mathcal{C}}} \Pr(\alpha_i \leq \bar{\alpha})$ is larger than $\Pr\left(\max_{i \in C_{s_{n(\tilde{\mathcal{C}})}}} \{\alpha_i\} \leq \bar{\alpha}\right) = \prod_{i \in C_{s_{n(\tilde{\mathcal{C}})}}} \Pr(\alpha_i \leq \bar{\alpha})$, we find that $\max_{i \in C_{s_{n(\tilde{\mathcal{C}})}}} \{\alpha_i\}$ first order stochastically dominates (FOSD) $\max_{i \in \tilde{\mathcal{C}}} \{\alpha_i\}$. Hence, from well known properties of FOSD, it follows that $\mathbf{E}\left[\max_{i \in \tilde{\mathcal{C}}} \{\alpha_i\}\right] \leq \mathbf{E}\left[\max_{i \in C_{s_{n(\tilde{\mathcal{C}})}}} \{\alpha_i\}\right]$, which, in conjunction with

22This type of assumption is widely used in literature and it is well known that this property holds for various families of distributions. The list of families with this property includes Exponential, Binomial, Poisson, and Normal.
the number of funds in \(\tilde{C} \) being equal to the number of funds in \(C_{s_n(\tilde{C})} \), shows that the alternative consideration set \(C_{s_n(\tilde{C})} \) is as good as \(\tilde{C} \). In other words, a consideration set rule that sorts funds and uses a cut-off will give an expected payoff as good or better than any other consideration set with the same number of funds.

Next, we proceed to determine the optimal threshold for the cutoff rule on a given informative signal. The following lemma states that the marginal increase in the expected level of maximum skill decreases as an investor sequentially adds funds into her consideration set.

Lemma A.2. It holds that

\[
\mathbb{E}\left[\max_{i \in C_{s_j}} \{\alpha_i\} \right] - \mathbb{E}\left[\max_{i \in C_{s_{j-1}}} \{\alpha_i\} \right] > \mathbb{E}\left[\max_{i \in C_{s_{j+1}}} \{\alpha_i\} \right] - \mathbb{E}\left[\max_{i \in C_{s_j}} \{\alpha_i\} \right]
\]

for any \(j = 2, \ldots, I - 1 \).

From the above lemma on the decreasing marginal benefit and the assumption of the constant marginal evaluation cost \(K \) for each fund, we obtain the following proposition which pins down an optimal threshold.

Proposition A.3. The consideration set of \(C_{s_{j^*}} = \{i | s_i \leq s_{j^*}\} \) is optimal if the following conditions are met:

\[
\mathbb{E}\left[\max_{i \in C_{s_{j^*}}} \{\alpha_i\} \right] - \mathbb{E}\left[\max_{i \in C_{s_{j^*}-1}} \{\alpha_i\} \right] \geq K \text{ if } 2 \leq j^* \leq I \text{ and }
\]

\[
\mathbb{E}\left[\max_{i \in C_{s_{j^*+1}}} \{\alpha_i\} \right] - \mathbb{E}\left[\max_{i \in C_{s_{j^*}}} \{\alpha_i\} \right] < K \text{ if } 1 \leq j^* \leq I - 1.
\]

The following corollary summarizes the relation between the evaluation costs and an optimal level of cutoff signal.

Corollary A.1. The optimal consideration set \(C_{s_{j^*}} \) in Proposition A.2 satisfies the followings:

(i) when \(K \) is sufficiently small, \(C_{s_{j^*}} = C_{s_I} \);

(ii) when \(K \) increases, \(j^* \) weakly decreases.

The result (i) of the above proposition is interpreted as follows. When \(K \) is very small, an investment consultant would be mostly concerned about \(\mathbb{E}\left[\max_{i \in C} \{\alpha_i\} \right] \), which increases as the consideration set \(C \) expands. Hence, she considers all funds. The result (ii) shows that as the evaluation cost increases, the investment consultant starts dropping funds with low signals one by one.

A.1 Cognitive Reference Number Bias

Thus far, we have examined the optimal consideration set construction when investors are subject to evaluation costs and verified that a consideration set made by a cutoff rule
constitutes an optimal consideration set. We now restrict our attention to the consideration set
\(C_s = \{i | s_i \leq s\} \) and introduce a cognitive reference number bias to the choice of threshold of
\(s \) for \(C_s \). We assume the investor has \(H \) reference numbers, \(Ref_1 = -\infty < \cdots < Ref_H = \infty \),
which are indexed by \(h = 1, \cdots, H \). The investor has a preference for these reference numbers
and she receives a mental reward of \(L \) by choosing a reference number as the threshold value.
Under this setup, the objective utility of (A.1) is modified as follows:

\[
U_{\text{Ref}}(C_s) = A \cdot \mathbb{E} \left[\max_{i \in C_s} \{\alpha_i\} \right] - n(C_s) \cdot K + L \sum_{h=1}^{H} 1(Ref_h = s).
\]

(A.2)

We are interested in how the optimal threshold decision in Proposition A.3 changes with
the introduction of a mental reward for choosing a reference number. The next proposition
shows how to find the optimal threshold with a reference number bias.

Proposition A.4. The optimal threshold \(s \) which maximizes \(U(C_s) \) given by (A.2) is either
the solution \(s_j^* \) in Proposition A.2 or the reference numbers \(Ref_h \) or \(Ref_h+1 \) such that
\(Ref_h \leq s_j^* \leq Ref_h+1 \).

The intuition of the above proposition is straightforward. From Lemma A.2, \(A \cdot \mathbb{E} \left[\max_{i \in C_s} \{\alpha_i\} \right] - n(C_s) \cdot K \) is concave in \(j \), and hence, reference numbers of \(Ref_h \) or \(Ref_h+1 \) such that
\(Ref_h \leq s_j \leq Ref_h+1 \) are always better than other non-adjacent references. Hence, it suffices
to check the solution in Proposition A.2 and adjacent references.

A.2 Simulations and Testable Hypotheses

Next, we simulate the model and characterize the distribution of threshold values. We
consider an investor who solves (A.2) by choosing the consideration set among 1,000 candidate
funds. The investor observes \(s_i = \alpha_i + \varepsilon_i \) where \(\alpha_i, \varepsilon_i \sim N(0, 0.2^2) \). We set \(A = 1, K = 10^{-8} \)
and \(L = 10^{-8} \) and assume the investor has reference numbers of \(Ref_1 = 0 \) and \(Ref_2 = 0.1 \).
Figure A.1 shows the realized histogram of thresholds from 10,000 repetitions. We see the
threshold values are clustered at the cognitive reference numbers of \(Ref_1 \) and \(Ref_2 \).

Finally, we close this section by establishing the following testable implications: (1)
when investors are subject to evaluation costs, they will construct a consideration set to be
evaluated further, (2) in constructing a consideration set, they will drop funds below a certain
threshold (Proposition A.2) in a dimension informative of fund manager skill (Proposition
A.1), and (3) if investors are subject to a cognitive reference number bias, then the observed
thresholds will be clustered at the cognitive reference numbers (Figure A.1).

A.3 Proofs

Proof of Lemma A.1 From Assumption 1, we have that

\[
f(s_H, \overline{\alpha}) f(s_L, \alpha) > f(s_L, \overline{\alpha}) f(s_H, \alpha)\]

52
for $\alpha < \alpha$, which implies that
\[
\int_{-\infty}^{\alpha} f(s_H, \alpha) f(s_L, \alpha) d\alpha > \int_{-\infty}^{\alpha} f(s_L, \alpha) f(s_H, \alpha) d\alpha
\]
and
\[
f(s_H, \alpha) \int_{-\infty}^{\alpha} f(s_L, \alpha) d\alpha > f(s_L, \alpha) \int_{-\infty}^{\alpha} f(s_H, \alpha) d\alpha.
\] (A.3)

Also, Assumption 1 gives that
\[
f(s_H, \alpha) f(s_L, \alpha) > f(s_L, \alpha) f(s_H, \alpha)
\]
for $\alpha < \alpha$, which implies that
\[
\int_{\alpha}^{\infty} f(s_H, \alpha) d\alpha > \int_{\alpha}^{\infty} f(s_L, \alpha) d\alpha
\]
and
\[
f(s_L, \alpha) \int_{\alpha}^{\infty} f(s_H, \alpha) d\alpha > f(s_H, \alpha) \int_{\alpha}^{\infty} f(s_L, \alpha) d\alpha.
\] (A.4)

Hence, combining (A.3) and (A.4) yields that
\[
\frac{\int_{\alpha}^{\infty} f(s_H, \alpha) d\alpha}{\int_{\alpha}^{\infty} f(s_L, \alpha) d\alpha} > \frac{\int_{-\infty}^{\alpha} f(s_H, \alpha) d\alpha}{\int_{-\infty}^{\alpha} f(s_L, \alpha) d\alpha},
\]
which implies
\[
\Pr(\alpha < \alpha|s_L) \geq \Pr(\alpha < \alpha|s_H).
\]

This completes the proof of the lemma. \qed

Lemma A.3. Consider two random variables of X and Y. Let F_X and F_Y denote the cdf of X and Y, respectively. Then, it holds that
\[
\mathbb{E}[X] - \mathbb{E}[Y] = \int_{-\infty}^{\infty} (F_Y(v) - F_X(v)) dv.
\]

Proof From integration by parts, we have that
\[
\mathbb{E}[X] = \int_{-\infty}^{\infty} v dF_X(v) = [vF_X(v)]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} F_X(v) dv.
\] (A.5)

Similarly, it holds that
\[
\mathbb{E}[Y] = [vF_Y(v)]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} F_Y(v) dv.
\] (A.6)
From (A.5), (A.6) and the properties of $F_X(\infty) = F_Y(\infty) = 1$ and $F_X(-\infty) = F_Y(-\infty) = 0$, it hold that
\[\mathbb{E}[X] - \mathbb{E}[Y] = \int_{-\infty}^{\infty} (F_Y(v) - F_X(v)) \, dv \leq 0, \]
where the last inequality is from the assumption of $\Pr(X \leq k) \geq \Pr(Y \leq k)$ for any k. This completes the proof of the lemma.

Lemma A.4. Consider two random variables X and Y such that $\Pr(X \leq k) \geq \Pr(Y \leq k)$ for any k. Then, it holds that $\mathbb{E}[X] \leq \mathbb{E}[Y]$.

Proof From Lemma and the assumption of $\Pr(X \leq k) \geq \Pr(Y \leq k)$ for any k, it follows that
\[\mathbb{E}[X] - \mathbb{E}[Y] = \int_{-\infty}^{\infty} (F_Y(v) - F_X(v)) \, dv \leq 0. \]
This completes the proof of the lemma.

Proof of Proposition A.1 This is a corollary of Theorem 2 in Blackwell (1951).

Proof of Proposition A.2 Let \tilde{C} denote an optimal consideration set. Construct another consideration set $C_{s_n(\tilde{C})} = \{i|s_i < s_{n(\tilde{C})}\}$. Because $s_i > s_{i+1}$, Lemma A.1 implies that
\[\Pr\left(\max_{i \in \tilde{C}} \{\alpha_i\} \leq \alpha\right) = \Pi_{i \in \tilde{C}} \Pr(\alpha_i \leq \alpha) \geq \Pi_{i \in C_{s_n(\tilde{C})}} \Pr(\alpha_i \leq \alpha) = \Pr\left(\max_{i \in C_{s_n(\tilde{C})}} \{\alpha_i\} \leq \alpha\right), \]
which, in conjunction with Lemma A.4, yields that
\[\mathbb{E}\left[\max_{i \in \tilde{C}} \{\alpha_i\}\right] \leq \mathbb{E}\left[\max_{i \in C_{s_n(\tilde{C})}} \{\alpha_i\}\right]. \]
From the above inequality, $n(\tilde{C}) = n\left(C_{s_n(\tilde{C})}\right)$ and the definition of $U(C)$ given by (A.1), we have that
\[U(\tilde{C}) \leq U\left(C_{s_n(\tilde{C})}\right) \]
Because \tilde{C} is optimal, $U(\tilde{C}) \geq U\left(C_{s_n(\tilde{C})}\right)$. Hence, $U(\tilde{C}) = U\left(C_{s_n(\tilde{C})}\right)$, showing that $C_{s_n(\tilde{C})}$ is also optimal. This completes the proof of the proposition.

Proof of Lemma A.2 Fix j. Let F_{j-1}, F_j, F_{j+1}, G_j and G_{j+1} denote the cdf of $\max_{i \in C_{s_{j-1}}} \{\alpha_i\}$, $\max_{i \in C_{s_j}} \{\alpha_i\}$, and $\max_{i \in C_{s_{j+1}}} \{\alpha_i\}$, α_j and α_{j+1}, respectively. From Lemma A.3, we have
that
\[E \left[\max_{i \in C_{j}} \{ \alpha_i \} \right] - E \left[\max_{i \in C_{j-1}} \{ \alpha_i \} \right] = \int_{-\infty}^{\infty} (F_{j-1} - F_j) \, dv \]
and that
\[E \left[\max_{i \in C_{j+1}} \{ \alpha_i \} \right] - E \left[\max_{i \in C_{j}} \{ \alpha_i \} \right] = \int_{-\infty}^{\infty} (F_j - F_{j+1}) \, dv. \]

Hence, to prove the lemma, it suffices to show
\[F_{j-1} - F_j \geq F_j - F_{j+1}. \]

The above inequality holds because
\[F_j - F_{j+1} = G_j F_{j-1} - G_{j+1} F_j \leq G_j F_{j-1} - G_j F_j = G_j (F_{j-1} - F_j) \leq F_{j-1} - F_j, \]
where the second inequality is from Lemma A.1 and the last inequality is from \(G_j \leq 1 \) and \(F_{j-1} - F_j \geq 0 \). This completes the proof of the lemma.

Proof of Proposition A.3 From Lemma A.2, we know that \(U(C_j) - U(C_{j-1}) \) is decreasing in \(j \). Hence, the optimal \(j \) is found when \(U(C_{j+1}) - U(C_j) \) becomes negative at the first moment. This completes the proof.

Proof of Corollary A.1 (i) Set \(K = 0 \). Because \(E \left[\max_{i \in C_{s_{j-1}}} \{ \alpha_i \} \right] - E \left[\max_{i \in C_{s_j}} \{ \alpha_i \} \right] < 0 \), it holds that \(j^* = I \) from Proposition A.3. Since the utility is continuous in \(K \), it still holds that \(j^* = I \) when \(K \) is sufficiently small. (ii) Fix \(K, j^* \) as the solution which satisfies the conditions of Proposition A.3. Assume that the new evaluation cost is \(K + \varepsilon \) with \(\varepsilon > 0 \). Then, it is clear that the two conditions cannot be satisfied when \(j^* \) is replaced with any \(j^{**} > j^* \) from Lemma A.2.

Proof of Proposition A.1 Let \(s_j \) be the solution of From Proposition A.3. Then, it holds that
\[U_{Ref}(C_{s_j}) \geq U_{Ref}(C_s) \text{ for any } s \text{ such that } \sum_{h=1}^{H} 1(Ref_h = s) = 0. \]

Next, fix references of \(Ref_h \) or \(Ref_{h+1} \) such that \(Ref_h \leq s_j \leq Ref_{h+1} \). Since \(A \cdot E \left[\max_{i \in C_{s_j}} \{ \alpha_i \} \right] - n(C_{s_j}) \cdot K \) is in \(j \), it holds that
\[U_{Ref}(C_{Ref_h}) \geq U_{Ref}(C_{Ref_{h'}}) \text{ for } h' < h \] (A.7)
and that
\[U_{Ref} (C_{Refh+1}) \geq U_{Ref} (C_{Refh'}) \] for \(h' > h \). \hfill (A.8)

Combining (A.3), (A.7) and (A.8) yields that
\[
\max \{ U_{Ref} (C_s), U_{Ref} (C_{Refh}), U_{Ref} (C_{Refh+1}) \} \geq U_{Ref} (C_s) \] for any \(s \),

which completes the proof of the proposition. \hfill \Box

\section{Appendix. Tables and Figures}
Table A.1: Page Views

This table presents regression results examining the relationship between being above a certain threshold and future page views. For Panel A, B, C and D, we set the threshold as $400MM, $600MM, $700MM and $1000MM, respectively. We only include funds within $50M range from the threshold. The dependent variable is the fund’s page views over the next four quarters. Columns (1)-(4) are OLS regressions with various sets of fixed effects. In columns (5)-(8), treatment and control are matched on Style x Year-Quarter (YQ) buckets (column (5)), Style x Year-Quarter (YQ) buckets and last quarter’s flow (column (6)), Style x Year-Quarter (YQ) buckets and last quarter’s return (column (7)), Style x Year-Quarter (YQ) buckets, last quarter’s flow and last quarter’s return (column (8)). Style x Year-Quarter (YQ) buckets are matched exactly and the Sturje’s rule is used to coarsen last quarter’s flow and last quarter’s return. Standard errors are clustered at the Year-Quarter (YQ) level.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Views</td>
<td></td>
<td>Views</td>
<td>Views</td>
<td>Views</td>
<td>Views</td>
<td>Views</td>
<td>Views</td>
<td>Views</td>
</tr>
<tr>
<td>Panel A: Above 400 Threshold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above400</td>
<td>2.698</td>
<td>4.567</td>
<td>3.462</td>
<td>0.615</td>
<td>0.521</td>
<td>3.965</td>
<td>-0.960</td>
<td>0.946</td>
</tr>
<tr>
<td>(0.34)</td>
<td>(0.10)</td>
<td>(0.22)</td>
<td>(0.87)</td>
<td>(0.88)</td>
<td>(0.23)</td>
<td>(0.78)</td>
<td>(0.78)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>3019</td>
<td>3091</td>
<td>3019</td>
<td>2738</td>
<td>2674</td>
<td>2032</td>
<td>2296</td>
<td>1599</td>
</tr>
<tr>
<td>R^2</td>
<td>0.237</td>
<td>0.014</td>
<td>0.246</td>
<td>0.322</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Style</td>
<td>YQ</td>
<td>Style, YQ</td>
<td>Style×YQ</td>
<td>Style×YQ, Flowq</td>
<td>Style×YQ, Retq</td>
<td>Style×YQ, Flowq, Retq</td>
<td></td>
</tr>
<tr>
<td>Matching variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel B: Above 600 Threshold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above600</td>
<td>0.711</td>
<td>-0.531</td>
<td>0.440</td>
<td>-2.635</td>
<td>-2.604</td>
<td>-4.882</td>
<td>-4.719</td>
<td>-9.324**</td>
</tr>
<tr>
<td>(0.76)</td>
<td>(0.82)</td>
<td>(0.84)</td>
<td>(0.44)</td>
<td>(0.39)</td>
<td>(0.21)</td>
<td>(0.30)</td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1946</td>
<td>1998</td>
<td>1946</td>
<td>1679</td>
<td>1610</td>
<td>1131</td>
<td>1335</td>
<td>897</td>
</tr>
<tr>
<td>R^2</td>
<td>0.217</td>
<td>0.025</td>
<td>0.234</td>
<td>0.350</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Style</td>
<td>YQ</td>
<td>Style, YQ</td>
<td>Style×YQ</td>
<td>Style×YQ, Flowq</td>
<td>Style×YQ, Retq</td>
<td>Style×YQ, Flowq, Retq</td>
<td></td>
</tr>
<tr>
<td>Matching variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clustered by</td>
<td>YQ</td>
<td>YQ</td>
<td>YQ</td>
<td>YQ</td>
<td>YQ</td>
<td>YQ</td>
<td>YQ</td>
<td>YQ</td>
</tr>
</tbody>
</table>

p-values in parentheses
* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Views</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel C: Above 700 Threshold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above<sup>700</sup></td>
<td>10.103<sup>**</sup></td>
<td>9.321<sup>*</sup></td>
<td>11.012<sup>**</sup></td>
<td>8.316</td>
<td>8.044</td>
<td>0.259</td>
<td>10.153</td>
<td>-0.365</td>
</tr>
<tr>
<td>(0.03)</td>
<td>(0.05)</td>
<td>(0.02)</td>
<td>(0.14)</td>
<td>(0.20)</td>
<td>(0.97)</td>
<td>(0.12)</td>
<td>(0.96)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1649</td>
<td>1686</td>
<td>1649</td>
<td>1419</td>
<td>1337</td>
<td>910</td>
<td>1145</td>
<td>728</td>
</tr>
<tr>
<td>R^2</td>
<td>0.235</td>
<td>0.027</td>
<td>0.254</td>
<td>0.366</td>
<td>0.002</td>
<td>0.000</td>
<td>0.003</td>
<td>0.000</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Style</td>
<td>YQ</td>
<td>Style, YQ</td>
<td>Style×YQ</td>
<td>Style×YQ, $Flow_q$</td>
<td>Style×YQ, Ret_q</td>
<td>Style×YQ, $Flow_q$, Ret_q</td>
<td></td>
</tr>
<tr>
<td>Matching</td>
<td>variables:</td>
<td>Style×YQ</td>
<td>$Flow_q$, Ret_q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clumped by</td>
<td>YQ</td>
<td>YQ</td>
<td>YQ</td>
<td>YQ</td>
<td>YQ</td>
<td>YQ</td>
<td>YQ</td>
<td>YQ</td>
</tr>
</tbody>
</table>

Panel D: Above 1000 Threshold								
Above¹⁰⁰⁰	2.940	1.665	2.117	3.801	0.704	-3.375	-0.133	-1.173
(0.61)	(0.81)	(0.72)	(0.68)	(0.92)	(0.69)	(0.99)	(0.91)	
Observations	1107	1132	1104	837	773	549	607	403
R^2	0.338	0.031	0.356	0.449	0.000	0.000	0.000	0.000
Absorbed FE	Style	YQ	Style, YQ	Style×YQ				
Matching	variables:	Style×YQ	Style×YQ, $Flow_q$, Ret_q					
Clumped by	YQ							

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
This table presents regression results examining the relationship between being above a certain threshold and future flows. For Panel A, B, C and D, we set the threshold as $400MM, $600MM, $700MM and $1000MM, respectively. We only include funds within $50M range from the threshold. The dependent variable is the funds percentage flow over the next four quarters. Columns (1)-(4) are OLS regressions with various sets of fixed effects. In columns (5)-(8), treatment and control are matched on Style x Year-Quarter (YQ) buckets (column (5)), Style x Year-Quarter (YQ) buckets and last quarter’s flow (column (6)), Style x Year-Quarter (YQ) buckets and last quarter’s return (column (7)), Style x Year-Quarter (YQ) buckets, last quarter’s flow and last quarter’s return (column (8)). Style x Year-Quarter (YQ) buckets are matched exactly and the Sturje’s rule is used to coarsen last quarter’s flow and last quarter’s return. Standard errors are clustered at the Year-Quarter (YQ) level.

Panel A: Above 400 Threshold

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>-0.010</td>
<td>-0.012</td>
<td>-0.009</td>
<td>-0.008</td>
<td>-0.009</td>
<td>-0.007</td>
<td>-0.018</td>
<td>-0.021</td>
</tr>
<tr>
<td></td>
<td>(0.61)</td>
<td>(0.51)</td>
<td>(0.60)</td>
<td>(0.68)</td>
<td>(0.65)</td>
<td>(0.73)</td>
<td>(0.38)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>Observations</td>
<td>3724</td>
<td>3795</td>
<td>3724</td>
<td>3410</td>
<td>3290</td>
<td>2481</td>
<td>2812</td>
<td>1931</td>
</tr>
<tr>
<td>R^2</td>
<td>0.051</td>
<td>0.009</td>
<td>0.059</td>
<td>0.166</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
</tr>
<tr>
<td>Matching variables:</td>
<td>Style×YQ, $Flow_q$</td>
<td>Style×YQ, Ret_q</td>
<td>Style×YQ, $Flow_q$</td>
<td>Style×YQ, Ret_q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Above 600 Threshold

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>0.000</td>
<td>0.003</td>
<td>-0.003</td>
<td>-0.010</td>
<td>-0.001</td>
<td>0.005</td>
<td>-0.011</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.98)</td>
<td>(0.89)</td>
<td>(0.89)</td>
<td>(0.74)</td>
<td>(0.98)</td>
<td>(0.85)</td>
<td>(0.72)</td>
<td>(0.88)</td>
</tr>
<tr>
<td>Observations</td>
<td>2342</td>
<td>2393</td>
<td>2342</td>
<td>2078</td>
<td>1934</td>
<td>1360</td>
<td>1590</td>
<td>1073</td>
</tr>
<tr>
<td>R^2</td>
<td>0.024</td>
<td>0.012</td>
<td>0.040</td>
<td>0.200</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td>Style×YQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching variables:</td>
<td>Style×YQ, $Flow_q$</td>
<td>Style×YQ, Ret_q</td>
<td>Style×YQ, $Flow_q$</td>
<td>Style×YQ, Ret_q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p-values in parentheses

* *p* < 0.10, ** *p* < 0.05, *** *p* < 0.01
Panel C: Above 700 Threshold

<table>
<thead>
<tr>
<th>Above 700</th>
<th>(1) 0.001 (0.96)</th>
<th>(2) 0.004 (0.81)</th>
<th>(3) 0.008 (0.64)</th>
<th>(4) -0.010 (0.63)</th>
<th>(5) 0.014 (0.56)</th>
<th>(6) -0.021 (0.51)</th>
<th>(7) 0.010 (0.70)</th>
<th>(8) -0.010 (0.72)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>1950</td>
<td>1990</td>
<td>1950</td>
<td>1707</td>
<td>1559</td>
<td>1048</td>
<td>1323</td>
<td>828</td>
</tr>
<tr>
<td>R^2</td>
<td>0.054</td>
<td>0.022</td>
<td>0.076</td>
<td>0.236</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Style</td>
<td>YQ</td>
<td>Style, YQ</td>
<td>Style×YQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching variables:</td>
<td>Style×YQ</td>
<td>Style×YQ, Flow$_q$</td>
<td>Style×YQ, Ret$_q$</td>
<td>Style×YQ, Flow$_q$, Ret$_q$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel D: Above 1000 Threshold

<table>
<thead>
<tr>
<th>Above 1000</th>
<th>-0.022 (0.35)</th>
<th>-0.032 (0.18)</th>
<th>-0.025 (0.28)</th>
<th>0.019 (0.55)</th>
<th>0.008 (0.81)</th>
<th>0.065 (0.17)</th>
<th>0.005 (0.89)</th>
<th>0.075 (0.17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>1314</td>
<td>1343</td>
<td>1311</td>
<td>1046</td>
<td>907</td>
<td>637</td>
<td>705</td>
<td>462</td>
</tr>
<tr>
<td>R^2</td>
<td>0.087</td>
<td>0.030</td>
<td>0.109</td>
<td>0.349</td>
<td>0.000</td>
<td>0.004</td>
<td>0.000</td>
<td>0.004</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Style</td>
<td>YQ</td>
<td>Style, YQ</td>
<td>Style×YQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching variables:</td>
<td>Style×YQ</td>
<td>Style×YQ, Flow$_q$</td>
<td>Style×YQ, Ret$_q$</td>
<td>Style×YQ, Flow$_q$, Ret$_q$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p-values in parentheses

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table A.3: Returns

This table presents regression results examining the relationship between being above a certain threshold and future returns. For Panel A, B, C and D, we set the threshold as $400MM, $600MM, $700MM and $1000MM, respectively. We only include funds within $50M range from the threshold. The dependent variable is the fund’s return over the next quarter. Columns (1)-(4) are OLS regressions with various sets of fixed effects. In columns (5)-(8), treatment and control are matched on Style x Year-Quarter (YQ) buckets (column (5)), Style x Year-Quarter (YQ) buckets and last quarter’s flow (column (6)), Style x Year-Quarter (YQ) buckets and last quarter’s return (column (7)), Style x Year-Quarter (YQ) buckets, last quarter’s flow and last quarter’s return (column (8)). Style x Year-Quarter (YQ) buckets are matched exactly and the Sturge’s rule is used to coarsen last quarter’s flow and last quarter’s return. Standard errors are clustered at the Year-Quarter (YQ) level.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Above400</td>
<td>-0.002</td>
<td>-0.000</td>
<td>-0.001</td>
<td>-0.000</td>
<td>-0.001</td>
<td>0.000</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td>Observations</td>
<td>4592</td>
<td>4687</td>
<td>4592</td>
<td>4261</td>
<td>4066</td>
<td>3069</td>
<td>3484</td>
<td>2393</td>
</tr>
<tr>
<td>R^2</td>
<td>0.030</td>
<td>0.511</td>
<td>0.546</td>
<td>0.901</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Style</td>
<td>YQ</td>
<td>Style, YQ</td>
<td>Style×YQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching variables:</td>
<td>Style×YQ</td>
<td>Style×YQ, $Flow_q$</td>
<td>Style×YQ, Ret_q</td>
<td>Style×YQ, $Flow_q, Ret_q$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Above 600 Threshold</th>
<th>(1) Above600</th>
<th>(2) 0.005*</th>
<th>(3) 0.001</th>
<th>(4) 0.000</th>
<th>(5) -0.000</th>
<th>(6) 0.001</th>
<th>(7) 0.001</th>
<th>(8) 0.002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>2853</td>
<td>2932</td>
<td>2853</td>
<td>2548</td>
<td>2371</td>
<td>1669</td>
<td>1968</td>
<td>1329</td>
</tr>
<tr>
<td>R^2</td>
<td>0.023</td>
<td>0.559</td>
<td>0.589</td>
<td>0.920</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Style</td>
<td>YQ</td>
<td>Style, YQ</td>
<td>Style×YQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching variables:</td>
<td>Style×YQ</td>
<td>Style×YQ, $Flow_q$</td>
<td>Style×YQ, Ret_q</td>
<td>Style×YQ, $Flow_q, Ret_q$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p-values in parentheses
* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Returns continued...

<table>
<thead>
<tr>
<th></th>
<th>(1) Ret</th>
<th>(2) Ret</th>
<th>(3) Ret</th>
<th>(4) Ret</th>
<th>(5) Ret</th>
<th>(6) Ret</th>
<th>(7) Ret</th>
<th>(8) Ret</th>
</tr>
</thead>
</table>

Panel C: Above 700 Threshold

<table>
<thead>
<tr>
<th></th>
<th>Above700</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>-0.001</td>
<td>-0.002</td>
<td>-0.001</td>
<td>0.002</td>
<td>0.002</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.84)</td>
<td>(0.34)</td>
<td>(0.59)</td>
<td>(0.20)</td>
<td>(0.31)</td>
<td>(0.66)</td>
<td>(0.11)</td>
<td>(0.34)</td>
</tr>
<tr>
<td></td>
<td>Observations</td>
<td>2424</td>
<td>2472</td>
<td>2424</td>
<td>2156</td>
<td>1943</td>
<td>1305</td>
<td>1651</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.031</td>
<td>0.553</td>
<td>0.588</td>
<td>0.908</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Style YQ</td>
<td>Style, YQ</td>
<td>Style×YQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching variables:</td>
<td>Style×YQ</td>
<td>Style×YQ, Flow_q</td>
<td>Style×YQ, Ret_q</td>
<td>Style×YQ, Flow_q, Ret_q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel D: Above 1000 Threshold

<table>
<thead>
<tr>
<th></th>
<th>Above1000</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
<td>Ret</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.001</td>
<td>0.000</td>
<td>-0.001</td>
<td>0.000</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.79)</td>
<td>(0.82)</td>
<td>(0.72)</td>
<td>(0.60)</td>
<td>(0.96)</td>
<td>(0.55)</td>
<td>(0.99)</td>
<td>(0.77)</td>
</tr>
<tr>
<td></td>
<td>Observations</td>
<td>1620</td>
<td>1656</td>
<td>1617</td>
<td>1314</td>
<td>1131</td>
<td>771</td>
<td>870</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.031</td>
<td>0.628</td>
<td>0.673</td>
<td>0.913</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Absorbed FE</td>
<td>Style YQ</td>
<td>Style, YQ</td>
<td>Style×YQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching variables:</td>
<td>Style×YQ</td>
<td>Style×YQ, Flow_q</td>
<td>Style×YQ, Ret_q</td>
<td>Style×YQ, Flow_q, Ret_q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p-values in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
This figure plots the simulated frequency of cutoff thresholds from 10,000 repetitions. The investor observes $s_i = \alpha_i + \varepsilon_i$ where $\alpha_i, \varepsilon_i \sim N(0, 0.2^2)$. We set $A = 1$, $K = 10^{-8}$ and $L = 10^{-8}$ and assume that $Ref_1 = 0$ and $Ref_2 = 0.1$.
Figure A.2: Firm Level AUM Thresholds
This figure plots the frequency of firm level assets under management thresholds over the range $0 to $10B.

Figure A.3: Average Views Over Time
This figure plots the average number of views per fund each quarter. Views for equity and fixed income funds are plotted separately.
Figure A.4: Average Views Per Quarter
This figure plots the average number of views per fund by quarter. Views for equity and fixed income funds are plotted separately.

Figure A.5: Screen Frequency Over Time
This figure plots the frequency of screens over time.
Figure A.6: Histogram of Fund Assets Under Management Near $500MM
This figure plots the empirical frequency of funds assets under management for funds with assets under management between $450MM and $550MM.

Figure A.7: Screen Frequency By Month
This figure plots the frequency of screens by month over the 2013-2016 period.
Figure A.8: Screen Frequency By Performance “as of” Quarter
This figure plots the frequency of screens by performance “as of” quarter over the 2013-2016 period.

Figure A.9: Time Between Screen Date and Performance “as of” Date
This figure plots the time (in months) between the date of the screen and the performance “as of” date.