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Abstract 

The existence of potentially influential or outlier observations is ubiquitous in empirical accounting 

research. The purpose of this paper is to summarize the various methods used by accounting researchers 

to identify and control for influential observations; assess the effectiveness of such methods and of 

alternative methods from the statistics literature; and, provide guidance for future studies so they may 

systematically identify and mitigate the impact of influential observations. A survey of articles published 

in accounting journals shows considerable variation in the way researchers deal with influential 

observations prior to estimating a regression model. We demonstrate that the common approach of 

winsorizing each variable has only a modest impact on parameter estimates compared to “doing nothing”. 

We also demonstrate that truncation tends to bias coefficients toward zero. More generally, we show that 

both winsorizing and truncating do little to accommodate potential bias caused by unusual and infrequent 

events (i.e., data points that are not random errors). Alternatively, use of robust regression significantly 

reduces such bias and is preferable to winsorization or truncation when regression is used for hypothesis 

testing. In addition, robust regression methods are available in commonly-used statistical packages and 

they do not entail the ad hoc choice of winsorization or truncation rules, thus providing a convenient way 

to control for influential observations and enhance inter-study comparability. 
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1. Introduction 

This study examines the statistical problems related to the presence of influential 

observations in regressions estimated using accounting and market data. The objectives of this 

study are: (1) to summarize the various methods used to identify and adjust for influential 

observations in the accounting literature; (2) to assess the effectiveness of such methods in 

commonly used research designs; (3) to assess the effectiveness of alternative methods proposed 

by the statistics literature; and, (4) to provide guidance for future studies that need to identify and 

correct for the presence of influential observations. A common practice in accounting studies is 

to truncate or winsorize extreme values of each variable prior to estimating a regression model. 

This study aims to redirect researchers’ attention from extreme values to overall model fit (i.e. 

regression residuals) when attempting to identify and treat influential observations.  

In our review of the accounting literature, we find significant variation in the methods 

used to account for potentially influential observations, but the majority of studies either 

winsorize or truncate data.   Winsorizing or truncating outliers, which are data points located 

unusually far from the mean of the sample, is a reasonable approach when extreme values are 

likely caused by data errors.  However, when extreme values are generated from the underlying 

data-generating process, ex ante truncation or winsorization (prior to estimating regressions) can 

lead to either less efficient or biased estimates, depending the source of the extreme values.  

Suppose, for example, the “true” relation between variables x and y (x,y), both with standard 

normal distributions, is y=2x+error.  Now consider two data points, (5,10), and (-5,10).  If a 

researcher winsorizes observations at 2 standard deviations from the mean, then the data points 

would be transformed to (2,2) and (-2,2), respectively.  In the first case, (5,10), winsorizing 

reduces efficiency in a regression of y on x, since the data point represents a “good leverage 
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point.”
1
  In the second case, winsorizing reduces but does not eliminate the influence of this “bad 

leverage point.”
2
  This observation (transformed to -2, 2), will “pull” the slope of the regression 

line down. 

An alternative approach is to focus on influential observations, determined by their 

influence on parameter estimates from regression procedures.  Influential observations are 

generally considered to be data points that have a large impact on the calculated values of 

various estimates (e.g, mean, regression coefficients, standard errors, etc.).  Methods for 

identifying influential observations include Belsley et al. (1980), and more recently, robust 

regression procedures.  Returning to the simple example above, these methods would identify the 

data point, (10,5) as a “good leverage” point because the relation between y and x is consistent 

with the bulk of the data.  On the other hand, (10,-5) would be identified as an influential 

observation and it would be dropped from the sample in estimating the relation between y and x.   

By identifying influential observations, researchers can learn more about the data 

generating process of the dependent variable. In the case of the data point (10,-5), the large value 

of y might have been generated by an omitted variable. Therefore, identification of this 

influential observation can help the research improve model specification (e.g., add additional 

variables to the model).  As Belsley et al. (1980, p. 3) remark: 

“Unusual or influential data points, of course, are not necessarily bad data points; they 

may contain some of the most interesting sample information. They may also, 

however, be in error or result from circumstances different from those common to the 

remaining data.”  

 

This remark highlights an important issue for accounting researchers. Unusual data points 

may result either from erroneous data or from unusual events (omitted variables) affecting a 

                                                           
1
 A good leverage point is one where an extreme value of x, occurs in combination with an extreme value of y along 

the true regression line. 
2
 Bad leverage points occur when an extreme value of x  occurs in combination with a value of y that is far from the 

true regression line. 
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subset of the data. In the first case, unusual data points occur randomly in a dataset and are 

caused by measurement error, such as coding errors or wrong data-collection procedures.
3
 If 

outliers result from measurement error, researchers can correct, discard, or adjust observations to 

fit between a lower and an upper bound. In the second case, unusual data points are usually not 

random and likely indicate areas where a certain theory is not valid or the presence of infrequent 

events that generate extreme outcomes. For instance, a company deciding to sell a business 

taking large restructuring and asset impairment charges would have unusually low total accruals, 

or an exploration company reporting a large unexpected oil discovery would have unusually 

large stock returns.
4
  

In the OLS framework, ignoring the underlying causes of these unusual observations 

influences the model estimates and is a form of model misspecification and a potential correlated 

omitted variables problem. This problem may cause wrong statistical inferences if the unusual 

events are correlated with both the dependent variable and the variable of interest. In this case, 

researchers should be very cautious in generalizing the results of their statistical analyses. 

Moreover, researchers should attempt to mitigate the effect of these influential observations by 

modifying their model to include additional variables that capture the effect of unusual events, or 

by implementing econometric methods that are robust to the presence of influential observations.  

                                                           
3
 Kraft et al. (2006, p. 307) provide an example of a data error in CRSP: “…consider the case of Smith Corona, 

which filed for bankruptcy in 1996 and delisted in May of 1996 when the stock closed at $0.375. In February of 

1997, the firm emerged from bankruptcy, and as part of the reorganization, the common stock at the time of the 

bankruptcy was canceled and shareholders of record received one warrant to purchase shares in the new company 

for every 20 shares previously held. The warrants had an estimated value of $0.10 or one half a cent per original 

share. When the new shares began trading in February 1997, CRSP used the new trading price of $3.12 as the firm’s 

delisting price. As a result, the calculated delisting return on CRSP is over 700%, when it actually should be closer 

to −100%. More importantly, using CRSP’s delisting return produces a BHAR of 2,177% when it should be 

−135%.” 
4
 Kraft et al. (2006, p. 333) provides examples of these two events, in 1996 Tyler Technologies Inc. had negative 72 

percent total accruals, scaled by total assets; and in 1998 Triton Energy Ltd. had 203 percent buy and hold abnormal 

returns.  
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Collectively, the issues described above provide part of our motivation to assess the 

efficacy and trade-offs associated with various methods to address the inference problems related 

to the occurrence of influential/outlier observations in the samples encountered in accounting 

research. We use a combination of simulations to compare the performance of winsorization, 

truncation, and robust regression in three general settings: (1) when the data does not contain 

influential/outlier observations; (2) when the data contains influential/outlier observations 

occurring at random; and, (3) when the data contains influential/outlier observations resulting 

from events that are correlated with both the dependent variable and the explanatory variables.  

We document that robust regression based on MM-estimation has the most desirable 

characteristics when it comes to treating influential/outlier observations when compared to other 

approaches commonly used in the accounting literature.
5

 First, when influential/outlier 

observations are uncorrelated with the independent variables, MM-estimation yields parameter 

estimates that are unbiased and identical to those estimated under OLS. Second, MM-estimation 

is the most effective at mitigating bias induced by a correlation between influential/outlier 

observations and both the dependent variable and the explanatory variables. Third, MM-

Estimation has up to 95% efficiency relative to OLS meaning that Type II errors are unlikely to 

be a consequence of its use. Finally, our simulation results supporting the use of robust 

regression methods are confirmed by a replication of a published accounting research study, 

namely the differential persistence of various types of accruals in Richardson et al. (2005). 

In contrast to robust regression based on MM-estimation, alternatives commonly found in 

the accounting literature are much less effective and may even induce bias. When 

influential/outlier observations are randomly distributed in the data, winsorizing at the top and 

                                                           
5
 Huber (1964, 1973) proposes a method named M-estimation. The M in M-estimation stands for "maximum 

likelihood type". MM-estimation is a subsequent approach proposed by Yohai (1987). More details about this 

approach are provided in Section 4.  
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bottom 1% yields unbiased estimates. However, winsorizing is ineffective at mitigating bias 

induced by influential/outlier observations that are correlated with the variable of interest. In 

addition, the practice of winsorizing independent variables, but not the dependent variable biases 

the coefficients away from zero. In contrast and as noted in Kothari et al. (2005), truncation 

based on extreme values of the dependent variable generates a downward bias in the estimated 

coefficients. None of the other alternatives we evaluate generates a bias when influential/outlier 

observations are randomly distributed. However, when influential/outlier observations are 

correlated with an independent variable, truncation exhibits less bias than winsorizing (or doing 

nothing), but the bias is even less using robust regression.  

In general, robust regression can be used in any situation where researchers use OLS. If 

there are no influential/outlier observations, both estimation methods will produce similar 

coefficients. However, in the presence of influential observations (and assuming the researcher 

wants to estimate a model yielding the most reliable inferences), use of robust regression is a 

viable alternative to winsorization or truncation. This is because it provides a well-founded 

statistical compromise between including all the data points and treating them equally in OLS 

regression versus excluding observations entirely from the analysis. The results of our study 

should enable accounting researchers to make informed research design choices when it comes 

to mitigating the influence of influential/outlier observations on the inferences they draw about 

their hypotheses. Robust regression based on MM-estimation yields estimates that are resistant to 

influential/outlier observations that are randomly distributed throughout the data, in addition to 

significantly reducing the bias created by influential/outlier observations that are correlated with 

the independent variable of interest. Moreover, MM-estimation is highly efficient relative to 
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OLS, and perhaps more importantly, is not subject to biases induced by winsorization or 

truncation.
6
 

The remainder of the paper is organized as follows. Section 2 reviews the accounting 

literature to document the approaches used to account for influential/outlier observations; 

Section 3 discusses the consequences of influential/outlier observations in the context of OLS 

estimation; Section 4 discusses robust estimation; Section 5 outlines our simulation analyses and 

reports the related results; Section 6 compares the approaches to account for influential/outlier 

observations by replicating a published accounting study; Section 7 discusses implementation of 

robust regression methods in accounting settings, and Section 8 concludes.  

2. Literature review: how are influential/outlier observations treated in accounting 

research studies? 

 

2.1 Background 

Accounting archival studies typically aim to test a theory or hypothesis about the relation 

between one or many causal/explanatory variables (the x’s) and an outcome or dependent 

variable y.
7
 An issue that is well-known in accounting dating back to Ball and Foster (1982) is 

the difficulty of drawing causal inferences in quasi-experimental settings like those typically 

encountered in empirical accounting capital markets research. As highlighted by Cook and 

Campbell (1979, p. 37, see also Ball and Foster, 1982) “Accounting for the third-variable 

alternative interpretations of presumed (causal) relationships is the essence of internal validity.” 

Cook and Campbell (1979, p. 56) also note an important shortcoming of non-experimental data: 

“Instead of relying on randomization to rule out most internal validity threats, the investigator 

                                                           
6
 We stress that using robust regression is not a substitute for careful analysis of the data and thorough statistical 

modeling. As noted in the statistics literature, ultimately influential/outlier observations may provide interesting case 

studies and should be identified and their implications for inferences discussed. 
7
 For example, researchers have tested hypotheses about the effect of firm characteristics such as disclosure quality, 

size, profitability, and leverage on dependent variables such as returns, discretionary accruals, analysts’ forecast 

errors, management compensation, and audit fees. 
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has to make all the threats explicit and then rule them out one by one.” With regard to drawing 

causal inferences in empirical accounting research settings, in their review of corporate financial 

accounting research, Ball and Foster (1982, p. 165) write: “Because the laboratory environment 

is unavailable, the solution cannot be to “purify” the data from a theoretical perspective. The 

researcher must attempt to reduce the level of anomaly implied by the imperfect construct-data 

correspondence, but also will have to decide how much anomaly is tolerable.” 

It is generally accepted that accounting and stock return data contain extreme values and 

an early paper by Kennedy et al. (1992) examined alternatives to adjust for outliers in regression 

models. Intuitively, extreme data values in accounting are caused by unusual/infrequent events 

(e.g., write downs, new block-buster products, etc., see Appendix A for examples) rather than 

primarily by data errors. Of importance is that in some cases even just a few influential/outlier 

observations can bias inferences. For example, Guthrie et al. (2012) demonstrate that previous 

results by Chhaochharia and Grinstein (2009) are driven by two observations in a sample of 865 

firms.  

Extreme values influence parameter estimates for even the most basic relationships. For 

this reason, researchers often take measures to deal with potential extreme values in their data. 

To illustrate, Figure 1 provides a plot of three-day cumulative abnormal returns on quarterly 

earnings forecast errors (CARs).
8
 Figure 1A is a plot of all observations in the sample using the 

raw data. Figure 1B is the same data after winsorizing CARs and forecast errors at 1% and 99%. 

Figure 1C is the data after winsorizing CARs and forecast errors at 5% and 95%. The slope of 

the regressions (i.e., the ERCs) for Figures 1A, 1B, and 1C are 0.00002, 0.4088, and 1.618, 

                                                           
8
 The sample underlying the figures is as follows. We begin with all quarterly EPS forecasts on IBES’s detail file 

(WRDS dataset: DET_EPSUS) from 2005-2011. We use the median of the most recent forecast by all analysts 

making forecasts less than 90 days before the earnings announcement to calculate earnings forecast errors as Actual 

EPS - Median EPS forecast, scaled by stock price on the day prior to the return accumulation period (four trading 

days prior to the earnings announcement). CARs are three-day abnormal returns from the day before through the day 

after the announcement where abnormal returns equal raw returns minus the value-weighted market return. 
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respectively. These plots provide initial compelling evidence that the results of even the most 

basic ERC regression are strongly influenced by extreme observations and, consequently, by the 

choice of whether or not to, and how a researcher chooses to winsorize (or truncate) the data.  

 2.2 How are influential/outlier observations treated in accounting studies published between 

2006 and 2010?
 9
 

 

 To systematically document how accounting researchers choose to account for 

influential/outlier observations, we reviewed 857 studies published between 2006 and 2010 in 

Contemporary Accounting Research, Journal of Accounting Research, Journal of Accounting 

and Economics, Review of Accounting Studies, and The Accounting Review. The studies 

examined span a variety of areas including auditing, analysts’ forecasts, management 

compensation, earnings management, conservatism, taxes, disclosure, and the earnings-returns 

relation.  

As shown in Table 1, Panel A, 69% (590) of the studies are archival with the remaining 

31% split between 12% (101) analytical, 12% (106) experimental, and 7% (60) discussion and 

review studies (studies including both an analytical model and empirical tests are classified as 

archival). We searched the body, footnotes, and tables of each archival study for discussion of 

the treatment of influential observations/outliers. Only 68% of the archival studies (404 of 590) 

mention the presence of extreme observations/outliers or describe any procedures to deal with 

such observations (the percentage of studies not mentioning outliers ranges from 20% in RAST 

to 37% in JAR and CAR). We recognize that our classification of studies is subject to some 

limitations. For example, the procedures used to deal with extreme observations/outliers are not 

                                                           
9
 The corporate finance literature has also recognized the importance of influential/outlier observations in capital 

markets data. For example, in a review paper on capital structure Frank and Goyal (2005, 172) note, “The standard 

data sources such as Compustat have a nontrivial number of observations that seem quite anomalous. For instance, 

data items that by definition cannot be negative are sometimes coded as negative. Sometimes data items are coded in 

ways that result in the balance sheet not balancing or the cash flow identities not matching up. In some cases, a firm 

will have a value of some variable that is several orders of magnitude too large to be plausibly correct.” Frank and 

Goyal (2005) also note “It is particularly common to winsorize each tail at 0.5% or 1%.”  
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mutually exclusive; some studies use dichotomous dependent variables, while many studies use 

more than one regression model. Nevertheless, we believe our review serves at least two useful 

purposes. First, it organizes in a systematic way how the treatment of extreme 

observations/outliers varies across the literature. Second, it provides evidence demonstrating that 

there is need for greater consistency in the treatment for extreme observations/outliers in 

accounting research.  

Table 1, Panel A shows the breakdown of archival studies using winsorization, truncation, 

and other procedures. The most common solutions to address the presence of influential/outlier 

observations are winsorization and truncation, with 88% of the studies using one of these 

procedures separately or combined. As seen from Panel A, winsorization is the most common 

procedure used to deal with influential/outlier observations with 55% of the studies (221 of 404) 

winsorizing at least one variable. Winsorization alters the original data by imposing an upper and 

lower bound on influential/outlier observations by setting them equal to a researcher-specified 

percentile of the distribution (with most studies using the top and bottom 1%). 

Table 1, Panel B shows the breakdown of studies using winsorization of continuous 

variables. As seen from Panel B, of the 221 studies that apply winsorization, 151 (68%) 

winsorize the dependent variable, 202 (91%) winsorize at least one independent variable, and 

132 (60%) winsorize a combination of the dependent and independent variables. It is worth 

noting that 29 studies use a general winsorization rule for most variables, but an ad-hoc rule for a 

subset of variables. Examples of the ad-hoc cut-offs are setting extreme values of discretionary 

accruals as a percentage of total assets to be equal to plus and minus two; winsorizing all 

variables except the log of total assets; and setting extreme values of effective tax rates to one 

and zero. 
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 Table 1, Panel C shows the breakdown of studies that use truncation on continuous 

variables. Truncation is the second most common procedure with 40% of the studies (161 of 

404) truncating at least one variable. While truncation also imposes an upper and lower bound on 

the data, it discards observations beyond researcher-specified cut-offs. The cut-offs can be based 

on percentiles, similar to winsorization, or based on the influence of each observation on the 

OLS fit, for example, eliminating observations with large residuals. Of the 161 studies truncating 

observations, 143 (89%) truncate the dependent variable, 139 (86%) truncate at least one 

independent variable, and 121 (75%) truncate a combination of the dependent and independent 

variables. It is worth noting that 59 studies truncate observations based on a rule different than a 

percentile cut-off. For example, truncation of earnings scaled by total assets at plus and minus 

three, or truncation of firms with stock prices less than $5.  

With regard to other approaches to account for influential/outlier observations we find that 

13% of studies reviewed not using winsorization or truncation instead employ a diverse set of 

procedures including using ranks of the dependent and/or independent variables, log 

transformations, and some forms of robust regression (e.g., median regressions, least trimmed 

squares, and MM-estimation).  

Overall, the procedures used to identify and adjust for influential/outlier observations in 

accounting settings are, for the most part, inconsistently applied across studies. Between the 

studies using winsorization and truncation we identified 88 studies that used an ad-hoc rule for a 

subset of variables. We also identified 38 archival studies where the procedures employed were 

unclearly stated. For example, some studies noted that they used the Belsley et al. (1980) 

regression diagnostics, including standardized residuals or Cook’s D to truncate observations 

with large residuals, but many of these studies do not report the cut-offs employed or provide 
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enough detail regarding the procedures employed. Such inconsistencies make it difficult, if not 

impossible to replicate these studies, to make comparisons with the results of similar studies, or 

to reconcile conflicting results from similar studies.  

2.3 Influential/outlier observations and the skeweness of stock returns 

 The appropriate treatment of extreme observations is a source of debate in papers 

examining market efficiency with respect to accounting numbers. At the center of the debate is 

the extreme positive skewness in stock returns and the use of those returns as the dependent 

variable. For example, Kraft et al. (2005) examine the association between stock returns and 

accruals and show that the accrual anomaly is influenced by a very small number of extreme 

observations. Kraft et al. (2005) argue that the decision as to how to treat influential/outlier 

observations should depend on the purpose of the analysis. For example, if researchers are 

interested in testing a theory of the market pricing of accruals, then their model should fit the 

bulk of the data, and not reflect the effect of a relatively small number of extreme observations. 

On the other hand, if the purpose is to test a trading strategy and/or to predict future returns, then 

the only reason to truncate influential/outlier observations is the possibility that they are data 

errors. While data errors in returns are rare, they do occur (see footnote 1). Beyond that, Kraft et 

al. (2006, p. 307) note that if an error impacts delisting returns and “researchers suspect that the 

frequency of delisting is correlated with their partitioning variable (e.g., accruals/performance) 

then it will be worthwhile to report the sensitivity of the results to extreme performing firms. If 

the results are robust then it is simple to rule out data errors as the source of the significant 

results. On the other hand, if the results change, the researcher can investigate the affected 

observations to verify whether there are errors in the returns calculation. Any errors can then 

either be corrected or deleted and the analysis re-estimated.” 
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Other studies caution against the truncation of stock returns, for example using 

simulation Kothari et al. (2005) show that data truncation can induce a spurious negative relation 

between future returns and ex-ante information variables (e.g., analyst forecasts), while Core 

(2006, p. 350) states, “in general, deleting based on the robust regression techniques employed 

and advocated by KLW seems inappropriate… deleting extreme observations from skewed 

return data leads to biased estimates and can bias inferences.” In addition, Teoh and Zhang 

(2011) argue that the results of Kraft et al. (2006) are attributable to non-random deletion of 

firms with unusually high stock returns, and instead conclude that the association between 

accruals and stock returns is robust to excluding influential/outlier observations, at least in a sub-

sample excluding loss firms. Notwithstanding these studies, as shown below, the results of this 

study demonstrate that a combination of right skewness of stock returns and truncation based on 

large realizations of stock returns leads to biased inferences. 

The seemingly conflicting views enumerated above have led researchers in a variety of 

directions when it comes to accounting for the effect of influential/outlier observations. Evidence 

in support of this conclusion is that our review identified 157 studies using stock returns as the 

dependent variable (at least in one regression model) where 53% (83) of such studies winsorized 

or truncated extreme stock returns while the remainder 47% (74) used the raw data. As discussed 

above, the objective of this study is to propose and calibrate an alternative technique to address 

the inference problems associated with influential/outlier observations without having to 

eliminate such observations from the data or having to resort to variable-by-variable 

winsorization or truncation rules. 

In contrast to the papers just noted, which argue against the truncation of skewed stock 

returns, numerous studies in the analyst forecast error literature truncate forecast errors. The 
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distribution of forecast errors is left skewed (i.e., has large negative errors) and forecast errors 

are used both as dependent and independent variable in a variety of studies. Abarbanell and 

Lehavy (2003, p. 114) highlight the issue that “many studies implicitly limit observations in their 

samples to those that are less extreme by choosing ostensibly symmetric rules for eliminating 

them, such as winsorization or truncations of values greater than a given absolute magnitude.” 

Abarbanell and Lehavy (2003) argue “such rules inherently mitigate the statistical impact of the 

tail asymmetry and arbitrarily transform the distribution, frequently without a theoretical or 

institutional reason for doing so.”  

3. Influential/outlier observations and OLS estimation 

3.1 A framework for examining the effect of extreme/influential/outlying observations 

An OLS framework is the most widely used methodology used to assess relations 

between variables in accounting research studies. In a simple OLS regression we have: 

        ,       (1) 

with the expected value of y given x as: 

 [ | ]   ̂   ̂          (2) 

Since parameters are estimated by minimizing the sum of squared errors,  ̂ is the mean 

effect of x on y, but not necessarily the “typical” effect. Since OLS parameters are based on the 

conditional mean of the dependent variable they suffer from the same problems as the mean 

itself, which is that they are susceptible to the effects of influential/outlier observations.  

In theory, to address the effect of influential/outlier observations on the estimated 

parameters of an OLS model researchers should consider what causes the extreme values of x 

and y. Along these lines, the distribution of the values of y will depend on the researchers’ 

sample selection procedure, the distribution of the x’s, and additional unknown sources of 
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variation captured by the error term. Extreme values of y can be caused by a number of things 

including extreme values of the hypothesized x’s that influence y; nonlinearities in the relation 

between x and y; or additional variables that also influence y, but are unknown to the researcher 

or omitted from the model. Of importance at the outset of the discussion here is that not all 

extreme observations have the same effect on the estimated OLS parameters. In particular, it is 

important to differentiate (as we do below) among four different statistical concepts/effects: 

univariate outliers, regression or multivariate outliers, leverage points, and influential 

observations.  

3.2 Outliers as a correlated omitted variable problem  

As discussed above, potential influential/outlier observations in either the dependent or 

independent variables can be the result of data errors or the result of other problems. For 

example, influential/outlier observations in the dependent variable can arise from skewness in 

the independent variables or from differences in the data generating process for a small subset of 

the sample. Influential/outlier values of the dependent variable caused by skewness in the 

independent variable, called good leverage points, are not necessarily problematic because such 

extreme values of y are generated by large values of x. That said, potential inference problems 

are caused by extreme values of y not explained by x. Such observations may be the result of a 

different data generating process, for example, the result of an unknown or omitted variable that 

frequently takes on a value of zero, but which occasionally takes on a different value and when it 

does so it has a major impact on y. In accounting settings such observations may be either one-

time events or idiosyncratic firm characteristics. As an example based on accruals, INSMED, 

Inc., a medical technology company had total accruals scaled by total assets of 206% because it 

reported a gain of $123 million on the sale of technology to Merck and had total assets of only 
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$4 million at the start of the year. Such infrequent yet significant events also occur in stock 

returns. For example, OSICOM Technologies earned a buy-and-hold abnormal return of 459% 

between 6/1/1995 and 5/31/96, a significant amount of which is attributable to agreements it 

announced during the year. Specifically, on May 31, 1996 it issued a press release that it became 

the sole supplier of video equipment for GTE on a $259 million army contract (in fact, OSICOM 

had a buy-and-hold return of 46% for the two days May 30 and 31).  

 Depending on their magnitude, ignoring low-frequency extreme events will generate 

large standard errors and bias the coefficient estimates. To the extent that these high-impact 

events are correlated with the independent variables of interest, they lead to the standard 

correlated omitted variables problem. Additionally, holding the dollar value of any event 

constant, the impact of the event is likely to be much more significant for smaller firms. For 

example, the $123 million dollar gain reported by INSMED, Inc., had a dramatic impact on its 

accruals (206%), but had Merck reported the same gain, its accruals would have increased by 

only 2%. The key point is that infrequent events like these are likely to be correlated with firm 

size, and firm size is often correlated with variables commonly used to test hypotheses in 

accounting settings.  

 To provide some evidence on the pervasiveness (or frequency) of the problem in actual 

accounting data, Figure 2 plots the relation between total accruals and total assets. The purpose 

of Figure 2 is to use real accounting data to illustrate the correlation between infrequent events 

and the behavior of variables commonly used in accounting research (e.g., accruals). Using 

COMPUSTAT data from 1972-2001 for all firms with stock prices in excess of $5 we construct 

50 bins based on total assets. Figure 2 reports box plots of accruals for each bin. The key 

takeaway from Figure 2 is that (not surprisingly) extreme accruals occur more frequently in 
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smaller firms (see Appendix A for actual examples of extreme accruals and stock returns). The 

challenge for accounting researchers interested in testing hypotheses about accruals is retaining 

those extreme values of y that are “caused” by the independent variables of interest while, at the 

same time, limiting the influence of extreme values of y caused by infrequently events that are 

not included in the model. In the following section we discuss robust regression techniques that 

are intended to do precisely this.  

4. Robust regression  

4.1 Definition of robust estimator and properties of robust estimators 

 The term robust has many different connotations in the statistics literature. For example, 

the term robust standard error refers to standard errors that account for heteroscedasticity and/or 

error dependence. For our purposes, we will refer to robust estimators, and particularly to robust 

regression, as a class of estimators that satisfy two conditions: “(1) if a small change is made to 

the data, it will not cause a substantial change in the estimate, and (2) the estimate is highly 

efficient under a wide range of circumstances” (see Andersen 2008, p. 3). The first condition for 

a robust estimator is its resistance to the presence of unusual observations. A resistant estimator 

provides a valid estimate for the bulk of the data. The second condition for a robust estimator is 

its efficiency. An efficient estimator has high precision even when the distributional assumptions 

necessary for the estimator are not strictly met. An estimator is efficient if its variance is small, 

resulting in small standard errors.  

 The literature on robust estimators has focused on two additional properties: breakdown 

point and bounded influence. The breakdown point is an overall measure of the resistance of an 

estimator and is the smallest fraction of the data that a given estimator can tolerate without 

producing an inaccurate result. When an estimator “breaks down” it fails to represent the pattern 
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in the bulk of the data. The bounded influence property refers to the influence of each individual 

observation yi on the properties of a given estimator. Or, in other words, the marginal change in 

an estimate by the inclusion of the additional observation yi. 

4.2 Why OLS is not robust to the presence of influential/outlier observations under certain 

conditions  

 The OLS method to estimate regression parameters is not robust because its objective 

function, based on the minimization of the sum of squares of the residuals, increases indefinitely 

with the size of the residuals. By considering the sum of the squared residuals, OLS gives 

excessive importance to observations with very large residuals. In terms of the definitions 

discussed above, OLS has unbounded influence. In fact, even a single outlier can have a 

significant impact on the fit of the regression line/surface, which means the breakdown point of 

OLS is zero. In addition, extreme/ outlying observations can also be associated with non-

constant error variance, violating one of the OLS assumptions, causing the OLS estimates to lose 

efficiency because they give equal weight to all observations. Stated differently, OLS weights 

influential/outlier observations equally, even when the influential/outlier observation(s) contain 

less information about the true relation between x and y.  

4.3 Types of robust regression estimators 

 Robust regression methods estimate the parameters of a linear regression model while 

dealing with deviations from the OLS assumptions. There are a number of robust regression 

techniques, including: L-estimators (Least Absolute Values LAV, Least Median Squares LMS, 

and Least Trimmed Squares LTS), R-estimators, S-estimators, M-estimators, GM-estimators, 

and MM-estimators.
10

  

                                                           
10

 LTS estimation was proposed by Rousseeuw (1984); M-estimation by Huber (1964, 1973); S-estimation by 

Rousseeuw and Yohai (1984); and, MM-estimation by Yohai (1987). The discussion in this section is based on the 
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 In general, L-estimators rely on minimizing a modified version of the sum of squared 

residuals criteria, such as the sum of the absolute values of the residuals (LAV), the median of 

the squares residuals (LMS), or the sum of truncated or trimmed squares residuals after 

estimating the regular OLS regression (LTS). Although these methods are relatively easy to 

compute and have bounded influence, they are generally inefficient, performing badly in small 

samples. R-estimators rely on minimizing the sum of a score of the ranked residuals, but most R-

estimators have low breakdown points. S-estimators take a different perspective, focusing on the 

minimum variance property of the OLS estimators. S-estimators minimize a measure of the 

dispersion of the residuals that is less sensitive to influential/outlier observations than the OLS 

variance. However, these estimators have very low efficiency compared to OLS.  

 M-estimators, GM-estimators, and MM-estimators are based on minimizing a function of 

the residuals. This class of estimators minimizes the sum of a function, wi, of the scaled residuals 

(scaling residuals by an estimate of their standard deviation) using weighted least squares. The 

weight function wi is non-decreasing for positive values and less increasing than the square 

function, which means that errors that are far from zero receive progressively less weight than 

errors that are closer to zero. The most commonly used weight functions are the Huber and bi-

square functions. The final weights are informative and can be used to identify which 

observations are extreme. The general criteria to be minimized is:  

∑   (
  

 ̂ 
)      

 
                                                                       (3) 

Note that OLS can be considered a special case within this class of estimators where the 

square function is used to weight the residuals. MM-estimators are widely used and combine a 

high breakdown point with high efficiency (MM-estimation has up to 95% efficiency relative to 

                                                                                                                                                                                           

reviews of robust methods in Andersen (2008); Maronna, Martin and Yohai (2006); and, Fox and Weisberg (2010) 

(see also, Chen (2002), and Verardi and Croux (2009)). 
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OLS and it is usually pre-set to 85% in MM-estimation commands in STATA, SAS and R).  

MM-estimators are computed using an iterative procedure, because the residuals cannot 

be found until the model is fitted, and the parameter estimates cannot be found without the 

residuals. The estimation procedure follows these steps: (1) first pass coefficients are calculated 

using some form of resistant regression (usually the S-estimator with Huber or bi-square 

weights); (2) the first pass coefficients are used to estimate residuals and the scale parameter; (3) 

a weight function is applied to the scaled residuals; (4) a second pass estimate of coefficients is 

obtained using weighted least squares; and (5) the new coefficients are used for a new iteration 

(keeping constant the measure of the scale of the residuals). The solution is considered to have 

converged when the change in estimates is no more than 0.1% from the previous iterations.
11

  

5. Simulation analysis and procedures 

5.1 Overview 

As discussed in Section 3.3, extreme values of y from infrequent, but extreme events, 

possibly arising from a data-generating process that is different from the bulk of the sample, can 

bias coefficients if they are correlated with x. In this section we use Monte Carlo simulations to 

evaluate the relative effectiveness of methods commonly used in accounting research to account 

for such bias and its related effect on the inferences drawn from the analysis. As explained 

before, the approaches used in accounting range from “do nothing” to winsorization and 

truncation. A key aspect of the simulations is that we used known conditions of the data to 

compare the previously mentioned approaches with robust regression based on MM-estimation 

                                                           
11

 We are only able to identify a handful of accounting studies using robust regression (see Aboody et al. 2010, Bell 

et al. 2008, Chen et al. 2008, Choi et al. 2009, Dyreng and Bradley 2009, Kimbrough 2007; and, Ortiz-Molina 

2007). Appendix B contains excerpts from these studies describing the procedure used. In most cases, the 

procedures were mentioned in a footnote without enough information for us to replicate them. Appendix C provides 

guidance to implement robust regression in commonly-used statistical packages.  
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to see which performs best at mitigating the impact of influential/outlier observations on 

coefficient estimates and overall inferences.  

To perform the simulations we specify a data generating process for a dependent variable 

y consisting of a variable of interest x, and a variable z that is zero for most of the sample. 

Conceptually, z can be thought of as an infrequent event that generates extreme values of y when 

it occurs. To model the impact of these infrequent events, z can occur only for high values of x, 

which induces a correlated omitted variables problem if z is ignored and extreme values of y 

(which are caused by z) are not properly dealt with by the underlying model.  

Equation (4) describes the data generating process for y:  

y                  (4) 

where    (   ),           if x is in the top decile of its distribution and a random draw 

from a uniform distribution exceeds 0.8,    (   )        (   ). By construction, z is zero 

approximately 98% of the time. We assume z is not observed by the researcher and, therefore, 

leave the generated value as is. The variable z is continuous to simulate a data generating process 

where extreme/ outlying observations (1) occur as a result of a correlated omitted variable; (2) 

exhibit variation in magnitude with respect to the bulk of the data; (3) the x and y variables have 

smooth distributions; (4) the distribution of y is skewed.
12

  

 For simplicity and without loss of generality, we set = 0, .0, 

except when we test for potential Type I (Type II) errors where we set , and = 0. In 

our tests we generate 250 samples of 2,000 observations and for each sample we estimate 

                                                           
12

 Although a single large influential/outlier observation can significantly bias OLS estimates, if there is a fixed 

number of influential/outlier observations, increasing the total number of observations would reduce the individual 

influence of each. We simulate a data generating process where influential/outlier observations do not occur at 

random, but rather occur as the result of a correlated omitted variable. The percentage of influential/outlier 

observations in our simulated datasets remain constant resulting from a correlated omitted variable, which means 

increasing the number of observations would not help in reducing the influence of such influential/outlier 

observations. This feature is consistent with accounting panel datasets where increasing the number of years adds 

more observations with large values of the x and y variables.  
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regressions employing the following alternative approaches to accounting for potential 

influential/outlier observations: 

1) “Do nothing.” As shown by our literature review, approximately one third of published 

archival papers do not report addressing the existence of influential/outlier observations. 

2) Winsorize y and x at the extreme 1% of their distribution.  

3) Winsorize x, but leave y as is. 

4) Truncate y and x at the extreme 1% of their distribution. 

5) Truncate x, but leave y as is. 

6) Leave x and y variables as they are and use robust regression based on MM-estimation. 

 

5.2 Graphical illustration of alternative identification and treatment of influential/outlier 

observations 

 

Before reporting our main simulation results, we construct a sample of 4,000 

observations and generate plots to illustrate the impact of alternative approaches to treat 

influential/outlier observations. Figure 3a presents a plot of 4,000 observations where y is 

generated from the following data generating process: 

              .       (5) 

In this case, since z is correlated with x and y, if left unaccounted for (i.e., under the “do 

nothing” approach) the influential/outlier observations will bias the coefficient on x. The circles 

in the plot in Figure 3 are the observations where z is nonzero. As expected based on the data 

generating process underlying y, these “shocks” occur for roughly 2% of the sample and only 

when x is extreme. As can be seen from the plot, these observations will induce an upward bias 

in  . Consistent with this, the estimated   for this sample (represented by the black line) is 0.89 

(from Eq. 5 the expected value of should be  0.80). 

To further illustrate the consequences of the approaches adopted in many accounting 

studies to deal with influential/outlier observations, Figure 4a uses the same data as Figure 3, but 
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adds lines representing the top and bottom 1% of x and y. The key takeaway from the plot is that 

while winsorizing or truncating will reduce the influence of z to a small degree, it will also 

reduce the influence of good leverage points. To better appreciate this point, Figure 4b plots the 

data after winsorizing x and y. The key feature of the Figure is that winsorizing does little to 

reduce the impact of z on y because, while magnitudes of the y’s are reduced, many are retained 

and are still large relative to the rest of the sample. Consistent with this, estimation of Eq. (5) on 

the winsorized data yields a slope coefficient of 0.87, which reduces the bias caused by z, but 

only by 0.02. Figure 4c plots the data after winsorizing x, but not y. As documented by our 

review of the literature (see Table 1) this is a fairly common practice in accounting, particularly 

when y is returns. Unfortunately, this approach generally makes the problem worse than doing 

nothing at all because it can bias the coefficient away from zero. For example, assume for a 

given observation that e = 0, x = 5, z = 0, y = 4 (0.8*x), and that x is winsorized at 2. The result is 

an artificial error of 2.4 (4 - 0.8*2) that biases the regression line upwards. More precisely, the 

estimated slope coefficient if only x is winsorized is 0.91, which is greater than the estimate of 

0.89 in the “do nothing” case (see Figure 3) and also greater than the true value of   equal to 

0.80.  

Following the approach used in Figures 4a, 4b, and 4c to visually illustrate the effects of 

winsorization as a means to account for potential influential/outlier observations, Figures 5a and 

5b adopt a similar approach to illustrate the effects of truncation on the data and the resulting 

inferences about the coefficients. To save space, we only discuss the main features and 

takeaways of these Figures. Figure 5a plots the same data as before but after truncating extreme 

values of x and y (i.e., the top and bottom 1% of their underlying distributions). This truncation 

rule (which is not uncommon in accounting research settings) yields a parameter estimate of 
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roughly 0.77, evidence of a downward bias given that the true   is 0.80. Following, Figure 5b 

illustrates a truncation rule applied just to extreme values of x and demonstrates that truncating 

only the independent variable does not reduce the bias caused by z. For example, as illustrated by 

the circles in this figure, many of the extreme values of y caused by z will still remain in the 

sample and the estimated slope coefficient is 0.90. 

Turning to robust regression based on MM-estimation, Figure 6 illustrates the 

observations considered to be influential/outlier observations, which will be down-weighted 

when robust regression based on MM-estimation is used. In the Figure the diamonds represent 

data points with extreme values of y caused by z considered to be the influential/outlier 

observations; the circles symbolize data points that might be considered influential/outlier 

observations, but which are not influenced by z (i.e., when z is zero); while the triangles are data 

points with extreme values of y that are influenced by z (i.e., when z is not zero), but are not 

considered influential/outlier observations. The key takeaway is that the advantage of a robust 

estimation procedure (like MM estimation) is that good leverage points are retained, while other 

potential influential/outlier observations get down-weighted. In other words, extreme values of y 

caused by extreme values of x are retained which increases efficiency relative to a naive 

winsorization or truncation rule. As a result, robust estimation has the advantages of being both 

consistent and efficient relative to naïve winsorization and/or truncation rules. 

5.3 Simulation Results 

Baseline simulation results are reported in Table 2, Panel A where influential/outlier 

observations are generated by an infrequent event that is randomly distributed and independent 

of x. We generate values for y following the data generating process specified in Eq. (4) except 

that instead of extreme events z occurring only when x is in the top decile, z occurs with equal 
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probability (2%) across the entire x distribution. Values of y are generated with  being set to 

0.8 or zero and  being set to 1.0 or zero. In the first three regression models reported in Panel A 

(first 3 rows of Panel A), z is omitted from the estimation to simulate a typical case where an 

infrequent event is omitted from the researcher’s model. In a second set of estimated regressions 

(the 4
th

 through 6
th

 rows of Panel A) z is included in the regression, the ideal solution of course, 

if the researcher could in fact identify such cases. The table reports mean estimates of  for 250 

samples of 2,000 observations under the alternative treatment of influential/outlier observations. 

Bias is the difference between the “true” parameter value and the mean estimate of .  

The benchmark case is “do nothing” where OLS is estimated without truncation, 

winsorizing, or down-weighting outliers. In this case where the influential/outlier observations 

are randomly distributed, not surprisingly, estimates of  are unbiased in all cases. In addition, 

when the influential/outlier observations are randomly distributed, the results are virtually 

identical when x and y are winsorized at the top and bottom 1%. This consistent with Kothari et 

al. (2005) who find that truncating y and x imparts a downward bias, but only when there is a 

correlation between x and y.  

Turning to the case where y is generated when  = 0, truncation does not impact  (i.e., 

truncation does not bias  to a value less than zero). The intuition for this is that the truncated 

observations are not influential/outlier observations generated by extreme values of x (because x 

is uncorrelated with y). This means that no good leverage points that might induce a relation 

between x and y are lost (see Appendix D for an analytical representation of bias caused in 

parameter estimates as a result of truncation). 

In contrast, when x is correlated with y and the true is 0.8 the estimated coefficient is 

biased down, as expected. Specifically, as shown under the heading “truncate” in Panel A, the 
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estimated  is biased downward by amounts ranging from 0.03 to 0.06 depending on the 

specification. While this is unlikely to impact significance levels in our simulations since  is set 

to 0.8, truncation can generate Type I or Type II errors when the true value of is closer to zero. 

These findings suggest truncation of influential/outlier observations should be avoided in favor 

of other alternatives. 

As with winsorizing in the baseline case, robust regression yields unbiased estimates in 

all specifications. Moreover, there is no evidence that robust regression biases coefficients when 

influential/outlier observations occur randomly.  

In contrast to Panel A, Panel B reports results where the infrequent events z, are 

correlated with x. In our analysis, such events only occur when x is in the top decile of its 

distribution. As a concrete example, x might be negatively correlated with size and z tends to 

occur only for small firms. As we shall show, these non-random influential/outlier observations 

are a concern for researchers attempting to draw inferences about how x influences y.  

Referring to Panel B, when we set  = 1.0 to generate the y values, we have a classic 

correlated omitted variables problem that will bias estimates of  when the influential/outlier 

observations are ignored. More specifically, when influential/outlier observations are 

untreated/ignored (i.e., the “do nothing” case),  is biased upwards by 0.10 (see the second 

regression model in Panel B). Even in the case were x is uncorrelated with y by construction (i.e., 

 = 0, see the third regression model in Panel B), the mean coefficient estimate is 0.10 (i.e., 

biased upward). Examination of the results under winsorizing (see the “Winsorize” column) 

reveals that winsorization does virtually nothing to reduce the influence of the correlated 

influential/outlier observations (i.e. the z’s). Moreover, the coefficient of 0.09 is almost identical 

to that (i.e., 0.10) in the “do nothing” case. Turning to truncation, it appears to mitigate the bias, 
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but this is largely an artifact of truncation’s tendency to bias parameter estimates downward. The 

final two columns of Panel B report the robust regression results where we find that this 

approach leads to an 80% reduction in the bias caused by the influential/outlier observations (i.e., 

0.10 versus 0.02). While the bias is not completely eliminated (i.e., = 0.02), its impact is 

substantially reduced. In untabulated results, we find that the bias created by the 

influential/outlier observations is significantly different from zero in 6% of the 250 samples (p < 

0.01) under the robust regression alternative compared to 90% of the time when 

influential/outlier observations are winsorized.  

To give a sense for the sensitivity of our results to parameter choices, Figures 7 and 8 

demonstrate the impact of the bias for alternative values of  (i.e., different degrees of 

association between x and y). In Figure 7, the y values are generated with y=1; with alternative 

values of  varying from -0.8 to +0.8; and with shocks that are randomly distributed and 

independent of x. These conditions imply that the expected bias in  is zero. As Figure 7 

illustrates, the bias is, in fact, zero for all methods except truncation. Under truncation, the bias is 

inversely related to the underlying value of . This is because truncation biases the coefficient 

towards zero, but the impact of the truncation bias approaches zero as the true relation between y 

and x approaches zero. This evidence suggests that in this setting truncating on y and x should 

not cause the Type I errors as suggested by Kothari et al. (2006).  

Figure 8 is similar to Figure 7 except that the shocks are correlated with x, causing a 

correlated omitted variables bias of approximately 0.10. As reported in Table 2, winsorizing does 

little to mitigate the bias while robust regression reduces the bias to 0.02. From Figure 8 we can 

see that the bias reported in Table 2 does not vary across parameter estimates for winsorization 

or robust regression. However, the Figure shows that robust regression is preferable to 
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winsorization despite the strength of the association between y and x and that robust regression is 

preferable to truncation over a large range of associations between y and x (-0.8 to +0.3). 

Moreover, when the association between y and x is strongly positive (+0.5 to +0.8) truncation is 

slightly better than robust regression (recall that the bias is inversely related to the parameter 

estimates when truncation is used). However, without knowledge of the true underlying 

association between y and x, the results suggest that robust regression is preferable to 

winsorization because winsorization causes a constant bias, and preferable to truncation as well 

because truncation causes a variable bias.  

Overall, the results in Table 2 and visual analysis provided in Figures 7 and 8 

demonstrate that robust regression is unaffected by random influential/outlier observations and 

significantly reduces bias caused by extreme events that are correlated with a researcher’s 

variable of interest. In sum, winsorizing does little to mitigate the influence of correlated 

influential/outlier observations while truncation imparts a downward bias on parameter 

estimates.
13

  

5.4 Trimming the independent variable but not the dependent variable.  

Our literature review found that a common practice in accounting settings is to either 

winsorize or truncate the independent variable, but not the dependent variable. As illustrated in 

Figures 3c and 4a this practice is likely to bias coefficients away from zero. To provide some 

analysis of this alternative, Table 3 reports results were only the independent variable is 

winsorized or truncated.  

                                                           
13

 We highlight that our simulations intend to highlight the potential differences between approaches in conditions 

applicable to accounting research studies. The literature on robust regression has extensively demonstrated both 

analytically and empirically the validity of the robust regression estimators. For an extensive review of the robust 

regression literature see Andresen (2008).  
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In Panel A of Table 3 where extreme events are randomly distributed and uncorrelated 

with x, winsorizing x, but not y imparts an upward bias in , increasing it from 0.80 to 0.82. As 

discussed earlier, winsorizing x “leverages up” its impact on y. In contrast, truncation of x 

appears to eliminate the downward bias caused by truncation of both x and y as reported in Table 

2. More importantly, however, as reported in Panel B of Table 3, truncating x does nothing to 

mitigate the bias caused by correlated influential/outlier observations. More specifically, Panel 

B’s results reinforce the resulting upward bias caused by winsorizing only the independent 

variable. In summary, the evidence reported in Table 3 suggests that truncating the independent 

variable but not the dependent variable may not mitigate the impact of influential/outlier 

observations. 

6. Winsorization, truncation, and robust regression in the context of a published 

accounting study 

 

 In this section we replicate a published accounting study to illustrate how different 

approaches to deal with influential/outlier observations may yield different estimates (and 

potentially different inferences). The study we selected (Richardson et al. 2005, hereafter RSST) 

examined the differential persistence of various types of accruals on overall earnings’ 

persistence. We selected this setting because it employs variables that are common to many 

studies in the accounting literature; it is widely accepted that there are influential/outlier 

observations in accruals components and earnings; and RSST (2005) used a winsorization rule 

different than the otherwise common top and bottom 1% of each variable. Our objective is not to 

criticize this study, but to simply illustrate how different approaches to deal with 

influential/outlier observations affect estimates (and potentially altering inferences). 

6.1 Data, variable measurement, and earnings persistence models 
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 We use all observations from Compustat with available data to calculate the variables of 

interest over the 1988 to 2001 period. Following RSST (see their Table 5) we estimate the 

following models:  

 ROAi,t+1   β0   β1ROAi,t   εt+1, (6) 

 ROAi,t+1   β0   β1ROAi,t   β2TACCi,t   εt+1, (7) 

 ROAi,t+1   β0   β1ROAi,t + β2∆WCi,t + β3∆NCOi,t + β4∆FINi,t   εt+1, (8) 

where for each firm i and fiscal-year t, ROA = Operating income after depreciation; TACC = 

total accruals from the balance sheet approach (= ∆WC + ∆NCO + ∆FIN); ∆WC = change in net 

working capital (WC = current operating assets – current operating liabilities); ∆NCO = change 

in net non-current operating assets (NCO = non-current operating assets – non-current operating 

liabilities); ∆FIN = change in net financial assets (FIN = financial assets – financial liabilities); 

with all variables scaled by average total assets. 

 In Eq. (6), given that earnings, scaled by average total assets, are fairly persistent, β1 is 

expected to be positive and close to one. In eq. (2) 1 is expected to be positive and close to one, 

while 2 is expected to be negative due to reversals in accruals that reduce the persistence of 

earnings. Finally, in Eq. (3) 1 is expected to be positive and close to one, while 2 to 4 are 

expected to be negative with 2 < 3 < 4 due to reversals in accruals with different degrees of 

reliability.  

6.2 Descriptive statistics and results 

 Table 4 presents descriptive statistics for the variables used in the analysis. The raw and 

winsorized data have a total of 65,994 firm-year observations. Panel A uses the raw data values 

for each variable; Panel B winsorizes each variable using a +1.0 and -1.0 cutoff (following RSST 

2005); Panel C winsorizes each variable at the 1
st
 and 99

th
 percentiles; and Panel D truncatres 
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each variable at the 1
st
 and 99

th
 percentiles. The descriptive statistics show that all variables are 

characterized by influential/outlier observations. Not surprisingly, the descriptive statistics also 

show that the different winsorization and truncation approaches produce distributions with 

different means and standard deviations (i.e., different distributional properties). Of note is that 

since truncation is based on the top and bottom 1% of the data for each individual variable it 

results in deletion of approximately 6% of the total number of observations (this is why the size 

of the truncated dataset is 62,227 observations compared to 65,994 in the other three cases).
14

  

 Table 5 reports the results of estimating the coefficients of Eq. (6) to (8) under the 

alternative approaches to account for influential/outlier observations. Panel A uses the raw data 

(i.e., no winsorization or truncation) for each variable; Panel B uses values winsorized at +1.0 

and -1.0 as done by RSST (2005); Panel C uses winsorized values based on the 1
st
 and 99

th
 

percentiles of each variable’s underlying distribution; and Panel D uses data were each variable 

has been truncated at its 1
st
 and 99

th
 percentile. In Panels A to D, estimation is based on OLS. In 

Panel E the raw values of each variable are used in conjunction with robust regression based on 

MM-estimation. In Panels A to D standard errors are clustered by firm. In Panel E robust 

standard errors are estimated using a bootstrap-cluster procedure (300 replications) to cluster by 

firm.
15

  

                                                           
14

 As a result, truncation is difficult to implement consistently in studies estimating different models because 

researchers face the choice of deleting more observations as the number of models with different variables increases, 

or estimating each model on a different sub-sample as a result of different truncation criteria.  
15

 Clustering by firm is preferable, although qualitatively similar, to the Fama and Macbeth approach used by RSST 

(p. 464) to mitigate the impact of auto-correlated errors over time (see Gow et al 2010). For the robsust regression 

results bootstrap standard errors were estimated by repeatedly sampling from the original sample. Sampling was 

done by drawing firm clusters with replacement in order to account for correlation between observations within a 

cluster. The bootstrap estimate of the standard error is the standard deviation of the bootstrap sampling distribution. 

Estimating bootstrap-based clustered standard errors is consistent with the findings of Cameron et al. (2008) and the 

recommendations of Andersen (2008, 71). This approach can also be extended to two-way (firm and year) 

clustering. More details are provided in Appendix C.  
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  Turning to the results, use of the raw data values (see Panel A) yields coefficient 

estimates that would seem to overestimate the persistence of ROA ( 1 > 1). In addition, the 

results do not show any effect of accruals on earnings persistence since 1 to 4 are 

insignificant. On the other hand, robust regression (Panel E) and truncation (Panel D) produce 

similar results to RSST’s (2006) findings (which are replicated in Panel B and based on RSST’s 

winsorization at +1.0 and -1.). While truncation yields similar results in this case, as noted above, 

under truncation sample size is reduced by 6% in this setting, something that may be unappealing 

in other accounting settings where sample size may be a consideration). Turning to the 

commonly applied 1% and 99% winsorization rule (see Panel C) reveals that the coefficient 3 

on the ∆NCO variable is positive and statistically significant at the 5% level ( 3 = 0.025), but the 

coefficient 4 on the ∆FIN variable is insignificant (model, 4 = -0.004). Thus, under this 

alternative the researcher would not have been able to reject the null hypothesis as to the 

reliability of the ∆FIN variable.  

While one might debate the reasonableness of winsorizing the data using a +1.0 and -1.0 

bound based on the researchers’ priors about the reasonable bounds for these variables (as done 

in RSST, 2005), such a debate is unnecessary and more importantly obscures the main takeaway 

of our analysis. Specifically, our results demonstrate that robust regression using MM-estimation 

yields coefficient estimates that are consistent with RSST’s (2006) predictions on the one hand, 

while on the other hand not requiring an ad hoc procedure to deal with potential 

influential/outlier observations at the outset. Such findings support our simulation results and 

recommendation of using robust regression procedures as a standard practice and as a preferable 

alternative to ad hoc winsorization and/or truncation rules that often vary from study-to-study 

(approaches which serve to reduce inter-study comparability in the process). 



 33 

7. Additional discussion of robust regression estimation  

7.1 Are there any drawbacks of using robust regression instead of OLS?  

Robust regression can be used in any situation where researchers can use OLS regression. 

If there are no leverage points or influential observations, both estimation methods will produce 

similar coefficients. However, in the presence of influential observations (the more common and 

likely case in accounting research), our results lead us to recommend that researchers go through 

the following steps:  

1) Estimate the main model of interest using OLS. 

2) Estimate the main model of interest using robust regression. 

3) If there are major differences between the coefficient estimates of (1) and (2), identify the 

observations behind the differences in estimates, as well as the potential causes of the 

influential observations (e.g., data-errors or model misspecification). 

4) The main model can be modified in a number of ways, for example: 

a. Using log, rank, or other transformations without changing the linearity 

assumptions or the data itself. 

b. Using a non-normal distribution that accommodates fat tails, and 

c. Using a non-linear specification. 

5) Include a discussion of the impact of influential/outlier observations as part of the study.  

 

 

In the presence of influential observations, assuming the researcher has aimed to estimate 

the best possible model, using robust regression is a viable (and non ad hoc) strategy since it is a 

compromise between including all the data and treating all observations equally under OLS 

regression versus excluding any observations entirely from the analysis. That said, robust 

regression is not a substitute for careful data analysis and thorough modeling. Ultimately, 

influential/outlier observations may provide interesting case studies and/or ways to modify or 

extend a theory and should always be identified and discussed. 
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7.2 Robust regression used as a diagnostic method to identify influential observations 

 Robust regression can be used not only to estimate and test hypotheses about coefficients 

of interest, but also to identify influential observations. Once identified, such observations can be 

analyzed separately from the rest of the data. For example, researchers may plot the robust 

standardized residuals against a measure of the influence of the explanatory variables (see e.g., 

Verardi and Croux 2009). In addition, the researcher can observe the weight given to each 

observation in the final iteration of MM-estimation, which means that observations with low or 

zero weights are candidates for investigation. Finally, MM-estimation is readily available in 

commonly used statistical packages like STATA, SAS and R. This approach is qualitatively 

similar to the residual diagnostics proposed by Belsley et al. (1980). However, a general problem 

with residual diagnostics is that they may prompt the researcher to delete influential/outlier 

observations (i.e. observations with large residuals, Cook’s distance or DFITS) but new 

influential/outlier observations can appear in subsequent iterations.  

7.3 Implementing robust regression  

Appendix C outlines how to implement robust regression estimation in commonly used 

statistical packages (e.g., STATA, SAS and R). Although it is generally straightforward to 

estimate robust regression, we note three practical concerns in using robust regression. First, a 

common concern in most accounting settings is cross-sectional dependence and its effect on 

estimated standard errors. Currently available robust regression commands do not estimate 

clustered standard errors by default (either one way or two-way). However (as we do), it is 

possible to estimate robust standard errors using a bootstrap method by drawing clusters with 

replacement for each bootstrap sample.  
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Second, there exist a variety of robust regression methods (Andersen 2008 provides a 

thorough review) and within each method there are several estimation options. Our analysis 

focused on MM estimation, introduced by Yohai (1987), which combines high breakdown value 

estimation and M-estimation, and which has both the high breakdown property and a higher 

statistical efficiency than S estimation. Finally, while there is a potential loss of efficiency using 

robust regression when compared to OLS, given that accounting studies typically have very large 

samples, loss of efficiency is unlikely to be a concern when using robust regression. As a final 

thought, we note that research on robust regression techniques continues to evolve in the 

statistics and econometrics literatures. 

8. Conclusion 

In this study we examine the statistical problems related to the presence of influential 

observations in regressions estimated using accounting and market data. In order to provide a 

relevant background for our analyses, first we review the accounting literature to identify the 

various methods used to mitigate the impact of influential/outlier observations in accounting 

research. We document that the most common solutions to address the presence of 

influential/outlier observations are winsorization or truncation. However, there is significant 

variation in how these approaches are implemented (see Table 1). For example, some studies 

winsorize and/or truncate the independent variables, but not the dependent variables, while other 

studies winsorize and/or truncate both. Beyond that, some studies only winsorize or truncate a 

subset of variables. Perhaps more importantly, roughly a third of all studies do not discuss the 

treatment of influential/outlier observations at all. Such wide variation in the treatment of 

influential/outlier observations makes it difficult to compare results across studies. 
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We also evaluate alternative approaches currently used in the accounting literature to 

account for influential/outlier observations and compared them to robust regression based on 

MM-Estimation. We assess the effectiveness of these approaches in cases where 

influential/outlier observations occur randomly in the data, as well as where such observations 

are correlated with the independent variable of interest. One motivation for our analysis is that 

the causes of influential/outlier observations in accounting numbers and stock returns do not 

appear to be random. For example, extreme events that generate influential/outlier observations 

are likely to occur more frequently for smaller firms. Since it is widely accepted that accounting 

numbers contain influential/outlier values we investigated and compared how various procedures 

mitigate the impact of infrequent, but correlated events. The results of our simulations 

demonstrate that that the common (but rather ad hoc) approach of winsorizing the raw data does 

little to mitigate the influence of correlated influential/outlier observations. In particular, 

winsorizing only the independent variable biases the coefficients away from zero, increasing the 

probability of a Type I error. In addition, we find that the common approach of truncating the 

raw data tends to bias coefficients downward, except in the special (and rare) case where the 

independent variable is uncorrelated with the dependent variable (i.e. the “true” parameter is 

zero).  

The advantage of robust estimation based on MM-estimation is that it offers both consistent 

and highly efficient estimation even in the presence of influential/outlier observations. We find 

that robust regression substantially reduces the bias (by 80%) induced by correlated 

influential/outlier observations. Beyond our simulation evidence, our conclusions about the 

advantages of robust estimation compared to winsorization and truncation are confirmed by the 

replication of a published accounting study. Specifically, our replication of Richardson et al. 
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(2005), focusing on the differential persistence of various accruals, demonstrates that robust 

regression based on MM-Estimation yielded reasonable parameter estimates without making 

changes to the original underlying data by making ad hoc assumptions about the bounds at which 

to winsorize or truncate influential/outlier observations.  

Our findings lead us to recommend that future studies consider the use of robust regression 

procedures as a standard practice. Doing so will not only help to strengthen potential causality, 

but also enhance inter-study comparability (perhaps even aiding in reconciling conflicting 

results). We hope that our findings will help in redirecting researchers’ attention from variable-

by-variable truncation or winsorization of extreme values to model fit when attempting to 

identify and treat influential observations. 
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APPENDIX A – Examples of low frequency events causing extreme outcomes as measured by 

extreme buy-and-hold stock returns (BHAR) and extreme positive and negative total accruals 

 

 

Extreme BHAR: 

 

OSICOM Technologies 6/1/1995-5/31/96 (BHAR = 459%): 5/31/96- Press release OSICOM 

UNIT NAMED SOLE SUPPLIER OF VIDEO EQUIPMENT FOR GTE $259 MILLION ARMY 

CONTRACT” (two-day BHAR = 46%). 1/19/1996- Press Release “1/19/96 - ROCKWELL TO 

SELL ITS NETWORK SYSTEMS BUSINESS TO OSICOM” (one-day BHAR = -47%). 

 

4Kids Entertainment (A licensing company) -5/1/1998-4/30/1999: 5/17/1998 “Pokemon poised to 

be pop culture’s next big phenomena Digicritters move out of Game Boys, into film, TV, toys 

and more” (two-day BHAR = 30%). 

 

TEKELEC 5/2/1994-5/1/1995: Sept 19, 1994 – announce distribution agreement with AT&T – 

up 25% (BHAR = 468%). 

 

Jones Medical Industries – 5/1/1995-4/30-1996: 3/18/1996 – Announce a marketing rights deal 

(up 24% in 3 days) (BHAR = 669%). 

 

 

 

Extreme Negative Accruals (Examples from bottom 1% of distribution): 

 

OPKO Health, Inc. 2007 (Accurals = -1,000%): Large write off of In-Process R&D ($243 Million 

on $40 million of assets in 2007 and assets of only $116k in 2006).  

 

CARDINAL COMMUNICATIONS INC, 2002 (Accruals = -990%): Expenses paid with stock 

($2,129,635) and assets of only $407K. 

 

JDS UNIPHASE CORP, 2001 (Accruals = -290%): Write down of good will $50 million on 

assets of $12 million. 

 

 

Extreme Positive Accruals (Examples from top 1% of distribution): 

 

Raytech 2001 (Accruals = 2200%): Company emerged from bankruptcy in 2001, and adopted 

fresh-start accounting. Accruals actually relate to the short-year January –April 2001 and extra-

ordinary gain of $6 million on assets of 300k. 

 

INSMED 2009 (Accruals = 206%): Gain on sale of an asset amounting to $127 million, with total 

assets of increasing from $4 million to $127million. This was the sale of intangible technology to 

Merck.  

 

SOMANETICS CORPORATION, 2004 (Accruals = 50%): Recognition of a deferred tax asset 

$6,700,000. 
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APPENDIX B – Examples of accounting studies using robust regression 

 

Aboody et al. (2010): “We estimate all equations using a robust regression technique, pooling 

data across years. The procedure begins by calculating Cook’s D statistic and excluding 

observations with D>1. Then, the regression is re-estimated, weights for each observation are 

calculated based on absolute residuals – Huber weights and biweights – and the estimation is 

repeated iteratively using the weighted observations until convergence in the maximum change in 

weights is achieved.” 

Bell et al. (2008): “To reduce the effects of outliers on estimated effects, we employ bounded 

influence ordinary least squares (OLS) (unreported results using seemingly unrelated regressions 

yield qualitatively similar conclusions). Estimating each model using robust regressions 

(excluding observations with leverage greater than one and smoothly downweighting outliers) 

does not materially alter the results. We report the percentiles and medians in addition to the 

mean values of the ratios since the mean is susceptible to the influence of outliers.” 

Chen et al. (2008): “To mitigate the effect of outliers, we winsorize observations in the outside l% 

of each tail of each variable in Equation (1), excepting the lower tail of the variables that are 

bounded below by zero and have some zero observations. Our results are substantially unaffected 

if we do not winsorize outliers of the dependent variable, if we delete rather than winsorize 

outliers, and if we make the winsorization/deletion rule more or less stringent within commonly 

applied levels as long as extreme outliers are pulled in or deleted (e.g., 2.5% and 0.5% 

winsorization rules yield similar results). To reduce the potential effect of influential 

observations, we estimate Equation (1) using least absolute deviation (LAD) estimation, which 

reduces the weight placed on large model residuals compared to least-squares estimation. The 

results of these approaches are reported in Table 5.” 

Choi et al. (2009): “Unless otherwise specified, all of the regressions are estimated after removing 

outliers that have a Cook’s (1977) distance value greater than 4/(sample size). As a result, the 

actual sample size is slightly smaller than 17,837 and varies across the regressions. Finally, we 

perform a median quantile regression and a robust regression to minimize the influence of 

extreme observations without removing them from regression analyses.” 

Dyreng and Bradley (2009): “We use robust regression to control for outliers in all tables. 

Because robust regression iteratively assigns weights to observations to mitigate the influence of 

outliers, some observations effectively receive a weight of 0, and are not included in the 

regression. We report the number of observations with nonzero weights in the N for each 

regression, which accounts for the slightly varying N from table to table. In a prior version of the 

paper, we used OLS and truncated all variables at the 1st and 99th%iles. We use robust regression 

in this version because we view the procedure as less subjective.” 

Kimbrough (2007): “In addition, to mitigate the impact of outliers, I report estimates based on 

Huber M estimation, which is a robust estimation method that, instead of minimizing the sum of 

squared residuals, minimizes the sum of less rapidly increasing functions of the regression 

residuals.” 

Ortiz-Molina (2007): “As it is typical in the executive compensation literature (and evident in 

Table 1), the right skewness of the data and the presence of large outliers require a robust 

estimation method. Following previous research, I use median regression (MR; also known as 

least absolute deviation regression) throughout the analysis.” 
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APPENDIX C – Robust regression (MM-estimation) in commonly-used statistical packages 

Robust regression (MM-estimation) can be easily implemented, usually with just a few extra lines of code 

beyond OLS. 

 In STATA using the mm_regress (Verardi and Croux 2009) and robreg (Jann 2010) commands 

with documentation and examples provided in Verardi and Croux (2009) and in STATA help.  

 

 In SAS using the proc robustreg command with documentation and examples provided in the 

SAS Institute Paper 265-67 by Colin Chen.  

 

 In R using the robustbase package and the command lmrob (Rousseeuw et al. 2012) with 

documentation and examples provided in the software package.  

To produce standard error estimates for our tests we wrote a STATA ado file that computes one-way 

(firm) or two-way (firm and year) clustered bootstrapped standard errors for robreg. Additional datasets 

and examples of the code will be made available online by the authors upon request.  
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APPENDIX D – Impact of truncation on estimates of  

The analysis below shows the impact of truncation on estimates of  in the case of one independent 

variable, x. n, T, and h represent coefficients for the entire sample (i = 1 to n), the sample after 

truncation (i=1 to T), and the truncated sample (i =T + 1 to n). 

 

 

 
 

 

The analysis suggests that bias caused by truncation is impacted by the beta coefficient on the truncated 

observations. In most cases, the direction of the n and h will be the same which means that truncation 

will bias coefficients towards zero except for cases where h is of a different sign than the underlying 

parameter value (which seems unlikely or at least rare). 
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Figure 1 – Plots of cumulative abnormal returns and analyst earnings forecast errors  

around earnings announcement dates 
 

 

 

 

 

The sample underlying the figures is constructed as follows. We begin with all quarterly EPS forecasts on IBES’s detail file (WRDS dataset: 

DET_EPSUS) from 2005-2011. We use the median of the most recent forecast by all analysts making forecasts less than 90 days before the 

earnings announcement to calculate the earnings forecast error as Actual EPS - Median EPS forecast, which is scaled by stock price on the day 

prior to the return accumulation period (four trading days prior to the earnings announcement). CARs are three-day abnormal returns from the day 

before through the day after the earnings announcement where abnormal returns equal raw returns minus the value-weighted market return. 

Figure 1A: Raw Data 

= ERC = 0.00002) 

 

 

Figure 1B: Data winsorized at 1% and 

99%. (= ERC = 0.408) 

Figure 1C: Data winsorized at 5% and 

95%. ( = ERC = 1.618) 
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Figure 2 – Accrual outliers and Firm Size 

 

 

The Figure is a box plot of accruals for total assets grouped into fifty bins. Accruals and assets 

data are obtained from COMPUSTAT and include all firms with sufficient data to compute 

total accruals (balance sheet approach) from 1972-2001. The horizontal lines are the top and 

bottom 1% of the accruals distribution.  
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Figure 3 - Plot of a simulated dataset and a fitted OLS regression line, which yields an estimated 

slope coefficient of 0.894 

 

 

The Figure presents a plot of simulated data consisting of 4,000 values of y generated from the following 

data generating process: y = bx + z + e, where x ~ N(0,1) and e ~ N(0,1). An “extreme event,” v, is 

generated from N(3,1). v is multiplied by d, an indicator variable equal to one when a random draw from 

a uniform distribution has a value equal to or exceeding 0.8, and x falls in the top 10% of its distribution. 

Thus z = d*v is non-zero roughly 2% of the time.   is assigned a value of 0.8 in the simulated data. An 

estimate of b is generated using the following OLS model:         . In the Figure, the square dots 

represent the normally occurring observations (no shock) while the round dots represent simulated 

influential/outlier observations (the shock).  
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Figure 4a – Plot of a simulated dataset (same data as Figure 3) with lines added to signify the top 

and bottom 1% of the distributions of x and y 

 

 
 

The data underlying the Figure is the same as that for Figure 3 except that lines have been added at the 1
st
 

and 99
th
 percentiles for the simulated values of both x and y (dotted lines). These lines are added because 

values below (above) the 1
st
 (99

th
) percentile are typically assumed to be extreme/ outlying observations 

under the commonly used truncation or winsorization rules applied in accounting research. In the Figure, 

the square dots represent the normally occurring observations (no shock) while the round dots represent 

simulated influential/outlier observations (the shock). An estimate of b is generated using the following 

OLS model:         . As in Figure 3, Figure 4a presents a scatter-plot of simulated data 

consisting of 4,000 values of y generated from the following data generating process: y = bx + z + e, 

where x ~ N(0,1) and e ~ N(0,1). An “extreme event,” v, is generated from N(3,1). v is multiplied by d, an 

indicator variable equal to one when a random draw from a uniform distribution has a value equal to or 

exceeding 0.8, and x falls in the top 10% of its distribution. Thus z = d*v is non-zero roughly 2% of the 

time.   is assigned a value of 0.8 in the simulated data (i.e., before any winsorization or truncation).  
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Figure 4b - Plot of a simulated dataset and a fitted OLS regression line after winsorizing both x and 

y at the top and bottom 1%, which yields an estimated slope coefficient of 0.87 

 

 

The data underlying the Figure is the same as that for Figure 3 except that the data have been winsorized 

at the 1
st
 and 99

th
 percentiles (both x and y). This approach mirrors the commonly used winsorization 

rules applied in accounting research where values below (above) the 1
st
 (99

th
) percentile are typically 

assumed to be influential/outlier observations. In the Figure, the square dots represent the normally 

occurring observations (no shock) while the round dots represent simulated influential/outlier 

observations (the shock). An estimate of b is generated using the following OLS model (on the 

winsorized data):         . As in Figure 3, Figure 4a presents a scatter-plot of simulated data 

consisting of 4,000 values of y generated from the following data generating process: y = bx + z + e, 

where x ~ N(0,1) and e ~ N(0,1). An “extreme event,” v, is generated from N(3,1). v is multiplied by d, an 

indicator variable equal to one when a random draw from a uniform distribution has a value equal to or 

exceeding 0.8, and x falls in the top 10% of its distribution. Thus z = d*v is non-zero roughly 2% of the 

time.   is assigned a value of 0.8 in the simulated data (i.e., before any winsorization).  
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Figure 4c - Plot of a simulated dataset and a fitted OLS regression line after winsorizing only x at 

the top and bottom 1%, which yields an estimated slope coefficient of 0.91 

 
 

 

The data underlying the Figure is the same as that for Figure 3 except that the x variable has been 

winsorized at the 1
st
 and 99

th
 percentiles. This approach mirrors the commonly used winsorization rules 

applied in accounting research where values below (above) the 1
st
 (99

th
) percentile are typically assumed 

to be influential/outlier observations. In the Figure, the square dots represent the normally occurring 

observations (no shock) while the round dots represent simulated extreme/ outlying observations (the 

shock). An estimate of b is generated using the following OLS model (on the winsorized data):     
    . As in Figure 3, Figure 4a presents a scatter-plot of simulated data consisting of 4,000 values of y 

generated from the following data generating process: y = bx + z + e, where x ~ N(0,1) and e ~ N(0,1). 

An “extreme event,” v, is generated from N(3,1). v is multiplied by d, an indicator variable equal to one 

when a random draw from a uniform distribution has a value equal to or exceeding 0.8, and x falls in the 

top 10% of its distribution. Thus z = d*v is non-zero roughly 2% of the time.   is assigned a value of 0.8 

in the simulated data (i.e., before any winsorization).  

.  
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Figure 5a - Plot of a simulated dataset and a fitted OLS regression line after truncating both x and 

y at the top and bottom 1%, which yields an estimated slope coefficient of 0.77 

 

 

The data underlying the Figure is the same as that for Figure 3 except that the data have been truncated at 

the 1
st
 and 99

th
 percentiles (both x and y). This approach mirrors the commonly used truncation rules 

applied in accounting research where values below (above) the 1
st
 (99

th
) percentile are typically assumed 

to be influential/outlier observations. In the Figure, the square dots represent the normally occurring 

observations (no shock) while the round dots represent simulated influential/outlier observations (the 

shock). An estimate of b is generated using the following OLS model (on the truncated data):     
    . As in Figure 3, Figure 4a presents a scatter-plot of simulated data consisting of 4,000 values of y 

generated from the following data generating process: y = bx + z + e, where x ~ N(0,1) and e ~ N(0,1). 

An “extreme event,” v, is generated from N(3,1). v is multiplied by d, an indicator variable equal to one 

when a random draw from a uniform distribution has a value equal to or exceeding 0.8, and x falls in the 

top 10% of its distribution. Thus z = d*v is non-zero roughly 2% of the time.   is assigned a value of 0.8 

in the simulated data (i.e., before any truncation).  
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Figure 5b - Plot of a simulated dataset and a fitted OLS regression line after truncating x at the top 

and bottom 1%, which yields an estimated slope coefficient of 0.90. 

 

 
 

The data underlying the Figure is the same as that for Figure 3 except that the x variable has been 

truncated at the 1
st
 and 99

th
 percentiles). This approach mirrors the commonly used truncation rules 

applied in accounting research where values below (above) the 1
st
 (99

th
) percentile are typically assumed 

to be influential/outlier observations. In the Figure, the square dots represent the normally occurring 

observations (no shock) while the round dots represent simulated extreme/ outlying observations (the 

shock). An estimate of b is generated using the following OLS model (on the truncated data):     
    . As in Figure 3, Figure 4a presents a scatter-plot of simulated data consisting of 4,000 values of y 

generated from the following data generating process: y = bx + z + e, where x ~ N(0,1) and e ~ N(0,1). 

An “extreme event,” v, is generated from N(3,1). v is multiplied by d, an indicator variable equal to one 

when a random draw from a uniform distribution has a value equal to or exceeding 0.8, and x falls in the 

top 10% of its distribution. Thus z = d*v is non-zero roughly 2% of the time.   is assigned a value of 0.8 

in the simulated data (i.e., before any truncation).  
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Figure 6 - Plot of a simulated dataset and a fitted robust regression line based on MM-estimation, 

which yields an estimated slope coefficient of 0.82 

 

 

The figure illustrates how MM-estimation identifies influential/outlier observations. An estimate of b is 

generated using MM-estimation using all of the data. The full dots represent the normally occurring 

observations not down-weighted by robust regression (no shock and not an influential/outlier 

observation). The circle dots represent the normally occurring observations down-weighted by robust 

regression (no shock, but an influential/outlier observation). The triangle dots represent simulated 

influential/outlier observations not down-weighted by robust regression (shock, but not an 

influential/outlier observation). The square dots represent simulated influential/outlier observations down-

weighted by robust regression (shock, and influential/outlier observation). The data underlying the Figure 

is the same as that for Figure 3. As in Figure 3, Figure 4a presents a scatter-plot of simulated data 

consisting of 4,000 values of y generated from the following data generating process: y = bx + z + e, 

where x ~ N(0,1) and e ~ N(0,1). An “extreme event,” v, is generated from N(3,1). v is multiplied by d, an 

indicator variable equal to one when a random draw from a uniform distribution has a value equal to or 

exceeding 0.8, and x falls in the top 10% of its distribution. Thus z = d*v is non-zero roughly 2% of the 

time. An estimate of b is generated using MM-estimation and using all of the data. 
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Figure 7 – Estimated   coefficients from simulations without influential/outlier observations (i.e., 

expected bias = 0) where true   varies from -0.8 to +0.8 

 

 
 

The Figure plots the results of simulations showing how the estimated coefficient,    is different from 

(i.e., biased) the true coefficient when there are no simulated influential/outlier observations (shocks) and 

where true   ranges from -0.8 to +0.8. The lines in the figure represent the average bias induced by the 

alternative estimation procedures. For each value of   the line represents the average   from 250 

replications of sample size 2,000. y is generated from the following model: y = bx + e, where x ~ N(0,1) 

and e ~ N(0,1) where b is assigned values ranging from -0.8 to +0.8. Estimates of b are then generated 

using OLS or robust regression. The regression model is:         , and, therefore, estimates of b 

should be unbiased (i.e., if b is set to 0.8, the estimate   should also be 0.8). OLS is estimated under three 

alternative treatments for influential/outlier observations. In the first, “do nothing” case we do not 

winsorize or truncate extreme values of y and x. In the second case, “Truncate,” we drop observations 

where either y or x falls in the top or bottom 1% of its respective distributions. In the third case, 

(“Winsorize”) we winsorize x and y when values fall in the top or bottom 1% of their respective 

distribution. Finally, we use robust regression estimates based on MM-estimation.  
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Figure 8 - Estimated   coefficients from simulations with influential/outlier observations (i.e., 

expected bias = 0.10) where true   varies from -0.8 to +0.8 

 

 
 

The Figure plots the results of simulations showing how the estimated coefficient,    is different from 

(i.e., biased) the true coefficient when there are simulated influential/outlier observations (shocks) and 

where true   ranges from -0.8 to +0.8. The lines in the figure represent the average bias induced by the 

alternative estimation procedures. For each value of   the line represents the average   from 250 

replications of sample size 2,000. y is generated from the following model: y = bx + z + e, where x ~ 

N(0,1), e ~ N(0,1), and an “extreme event” variable, v, is generated from N(3,1). The variable v is then 

multiplied by d, which is an indicator variable equal to one when a random draw from a uniform 

distribution has a value equal to or exceeding 0.8, and x falls in the top 10% of its distribution. Thus z = 

d*v is non-zero roughly 2% of the time.   is assigned values ranging from -0.8 to 0.8. Estimates of b are 

then generated using either OLS or robust regression. The regression model is:         . Since the 

variables x and z are correlated by construction, the omission of z from the estimation equation causes the 

estimated   to be biased. By construction, the bias will be roughly 0.10. To assess the extent to which this 

bias can be mitigated by truncating, winsorizing, or robust regression, OLS is estimated under three 

alternative treatments for the influential/outlier observations. In the first, “do nothing” case we do not 

winsorize or truncate extreme values of y and x. In the second case, “Truncate,” we drop observations 

where either y or x falls in the top or bottom 1% of its respective distributions. In the third case, 

(“Winsorize”) we winsorize x and y when values fall in the top or bottom 1% of their respective 

distribution. Finally, we use robust regression estimates based on MM-estimation.  
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Table 1: How Are Influential/outlier Observations Treated in Accounting Research Settings? 

 

The table presents a literature review of studies published between 2006 and 2010 in Contemporary 

Accounting Research, Journal of Accounting Research, Journal of Accounting and Economics, 

Review of Accounting Studies, and The Accounting Review. The body, footnotes and tables of each 

study was searched for discussion of the treatment of influential/outlying observations. The studies 

reviewed span auditing, properties of analysts’ forecasts, management compensation, earnings 

management, conservatism, tax, disclosure, and earnings-returns associations, etc.,. Studies that 

include both an analytical model and empirical tests are classified as archival. 

 

Panel A: Studies by general category 
 

  

Description 

 

Number of 

studies 

Percentage of  

total 

Archival 590 69% 

Analytical 101 12% 

Experimental 106 12% 

Discussion and reviews 60 7% 

Total number of studies  857  100% 

   Archival studies addressing influential/outlier observations 404 68% 

Archival studies do not addressing influential/outlier 

observations 186 32% 

Total archival studies  590  100% 

   Archival studies using winsorization 221 55% 

Archival studies using truncation 161 40% 

Archival studies using both winsorization and truncation 27 7% 

 Subtotal (N and % are not additive) 355 88% 

Archival studies using other techniques 49 12% 

Total archival studies addressing influential/outlier 

observations 404 100% 

   Archival studies with returns as dependent variable 157 27% 

Archival studies with other dependent variables 433 73% 

Total archival studies  590  100% 

   Returns winsorized as dependent variable 45 29% 

Returns truncated as dependent variable 43 27% 

Returns winsorized and truncated as dependent variable 5 3% 

 Subtotal (N and % are not additive) 83 53% 

Returns used raw as dependent variable 74 47% 

Total archival studies with returns as dependent variable 157 100% 
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 Panel B: Studies using winsorization 

 Description 

 

Number 

of 

studies 

Percentage 

of total 

Independent variables 202 91% 

Dependent variables 151 68% 

Both independent and dependent variables 132 60% 

Archival studies using winsorization (N and % are not additive)  221   

 

 

  

 Panel C: Studies using truncation 

 

 Description 

 

Number 

of 

studies 

Percentage 

of total 

Independent variables 139 86% 

Dependent variables 143 89% 

Both independent and dependent variables 121 75% 

Archival studies using truncation (N and % are not additive) 161   
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Table 2: Main simulation results 

 

The table reports simulation results where an independent variable x, is generated from a normal distribution with mean 

zero and a standard deviation of one, and with an “extreme event” variable v, that is generated from a normal distribution 

with a mean of three and a standard deviation one. In Panel A, v is multiplied by the variable d, which is one when a 

random draw from a uniform distribution has a valued equal to or exceeding 0.98, which means z= d*v, is non-zero 

roughly 2 percent of the time. In Panel B, a relation between x and z is induced differently. The variable d is assigned a 

value of zero whenever the corresponding x falls below the top decile of its distribution. Conversely, if x is in the top 

decile of its distribution, d is assigned a value of one whenever a random draw from a uniform distribution exceeds 0.8. 

This implies that z= d*v is non-zero roughly 2 percent of the time, but in Panel B it is correlated with x. The dependent 

variable y, is generated by applying the following data generating process:            , where e is drawn from a 

standard normal distribution. In all cases,   is set to zero. Four y variables are generated by varying values of b (zero or 

0.8) and   (zero or 1.0). A total of 250 samples are generated with 2,000 observations each. For each sample, x and y 

variables are winsorized or truncated at the top and bottom 1 percent of the sample for results reported in “Winsorize” and 

“Truncate,” columns. Reported values of b are means of the 250 underlying regressions for that condition. Bias is the 

difference between the mean and “true” parameter value (zero or 0.8). All regressions are estimated using OLS, except for 

robust regression which is based on MM-estimation. 

 

Panel B: Panel B: Infrequent events z are correlated with x 

   

 

 

Parameter 

Values “Do Nothing” Winsorize Truncate 

Robust  

Regression 

Regression Model:      ̂̂ Bias   ̂̂ Bias 
  ̂̂ Bias 

  ̂̂ Bias  

         .80 0 0.80 0.00  0.79 -0.01  0.74 -0.06  0.80 0.00  

         .80 1 0.90 0.10  0.89 0.09  0.81 0.01  0.82 0.02  

         0 1 0.10 0.10  0.09 0.09  0.04 0.04  0.02 0.02  

                

            .80 0 0.80 0.00  0.79 -0.01  0.74 -0.06  0.80 0.00  

            .80 1 0.80 0.00  0.80 0.00  0.77 -0.03  0.80 0.00  

            0 1 0.00 0.00 
 

0.00 0.00  0.00 0.00  0.00 0.00  

 
 

 
 

Panel A: Infrequent events z are independent of x 

   

 

Parameter 

Values “Do Nothing” Winsorize Truncate 

Robust  

Regression 

Regression Model:      ̂̂ Bias   ̂̂ Bias 
  ̂̂ Bias 

  ̂̂ Bias  

         .80 0 0.80 0.00  0.80 0.00  0.75 -0.06  0.80 0.00  

         .80 1 0.80 0.00  0.80 0.00  0.75 -0.05  0.80 0.00  

         0 1 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  

                

            .80 0 0.80 0.00  0.80 0.00  0.74 -0.06  0.80 0.00  

            .80 1 0.80 0.00  0.80 0.00  0.77 -0.03  0.80 0.00  

            0 1 0.00 0.00 
 

0.00 0.00  0.00 0.00  0.00 0.00  
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Table 3: Simulation results under winsorizing or truncating only the independent variable x 

 

This table reports simulation results similar to Table 2 except that only the independent variable x is winsorized or 

truncated. Otherwise, as in table 2, the independent variable x, is generated from a normal distribution with mean zero and 

a standard deviation of one, and with an “extreme event” variable v, that is generated from a normal distribution with a 

mean of three and a standard deviation one. In Panel A, v is multiplied by the variable d, which is one when a random 

draw from a uniform distribution has a valued equal to or exceeding 0.98, which means z= d*v, is non-zero roughly 2 

percent of the time. In Panel B, a relation between x and z is induced differently. The variable d is assigned a value of zero 

whenever the corresponding x falls below the top decile of its distribution. Conversely, if x is in the top decile of its 

distribution, d is assigned a value of one whenever a random draw from a uniform distribution exceeds 0.8. This implies 

that z= d*v is non-zero roughly 2 percent of the time, but in Panel B it is correlated with x. The dependent variable y, is 

generated by applying the following data generating process:            , where e is drawn from a standard 

normal distribution. In all cases,   is set to zero. Four y variables are generated by varying values of b (zero or 0.8) and   

(zero or 1.0). A total of 250 samples are generated with 2,000 observations each. For each sample, x and y variables are 

winsorized or truncated at the top and bottom 1 percent of the sample for results reported in “Winsorize” and “Truncate,” 

columns. Reported values of b are means of the 250 underlying regressions for that condition. Bias is the difference 

between the mean and “true” parameter value (zero or 0.8). All regressions are estimated using OLS, except for robust 

regression which is based on MM-estimation. 

 

 

Panel A: Infrequent events z are independent of x 

 
Parameter 

Values 

“Do 

Nothing” Winsorize Truncate 

Regression Model:      ̂̂ Bias  ̂̂ 
Bias  ̂̂ 

Bias
 

         .80 0 0.80 0.00 0.82 0.02 0.80 0.00 

         .80 1 0.80 0.00 0.82 0.02 0.80 0.00 

         0 1 0.00 0.00 0.00 0.00 0.00 0.00 

          

            .80 0 0.80 0.00 0.82 0.02 0.80 0.00 

            .80 1 0.80 0.00 0.82 0.02 0.80 0.00 

            0 1 0.00 0.00 0.00 0.00 0.00 0.00 

 

Panel B: Infrequent events z are correlated with x 

 

Parameter 

Values 

“Do 

Nothing” Winsorize Truncate 

Regression Model:      ̂̂ Bias  ̂̂ 
Bias  ̂̂ 

Bias
 

         .80 0 0.80 0.00 0.81 0.01 0.80 0.00 

         .80 1 0.90 0.10 0.92 0.12 0.90 0.10 

         0 1 0.10 0.10 0.11 0.11 0.10 0.10 

          

            .80 0 0.80 0.00 0.81 0.01 0.80 0.00 

            .80 1 0.80 0.00 0.81 0.01 0.80 0.00 

            0 1 0.00 0.00 0.00 0.00 0.00 0.00 

 

 

 

Table 4: Descriptive Statistics for RSST (2005) Earnings and Accrual Reliability Analysis 
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The table reports descriptive statistics for the variables used the analysis. The raw and winsorized data 

(Panels A-C) have a total of 65,994 firm-year observations. The truncated data (Panel D) has a total of 

62,227 firm-year observations. Variable definitions are as follows, ROAt,t+1 = Operating income after 

depreciation; TACCt = Total accruals using the balance sheet approach = ∆WC + ∆NCO + ∆FIN; ∆WCt = 

Change in net working capital where WC = current operating assets – current operating liabilities; ∆NCOt = 

Change in net non-current operating assets where NCO = non-current operating assets – non-current 

operating liabilities; and ∆FINt = Change in net financial assets where FIN = financial assets – financial 

liabilities (see the text for additional discussion of the variables). 

 

Panel A: Raw data 

Variable Mean Std. Dev. Minimum 

Lower 

Quartile Median 

Upper 

Quartile 

75 
Maximum 

ROAt+1 -0.362 50.173 -13,000 -0.063 0.055 0.115 4 

ROAt -0.108 4.538 -698 -0.056 0.059 0.119 4 

TACCt 0.120 15.887 -1,400 -0.074 0.044 0.194 2,628 

∆WCt 0.042 7.941 -690 -0.034 0.006 0.053 1,314 

∆NCOt 0.036 0.948 -199 -0.025 0.017 0.086 22 

∆FINt 0.023 7.259 -437 -0.084 -0.001 0.051 1,580 

 
Panel B: Winsorized at +1.0 and -1.0 (following RSST, 2005) 

Variable Mean Std. Dev. Minimum 

Lower 

Quartile Median 

Upper 

Quartile 

75 
Maximum 

ROAt+1 -0.023 0.267 -1.000 -0.063 0.055 0.115 1.000 

ROAt -0.016 0.264 -1.000 -0.056 0.059 0.119 1.000 

TACCt 0.054 0.334 -1.000 -0.074 0.044 0.194 1.000 

∆WCt 0.005 0.157 -1.000 -0.034 0.006 0.053 1.000 

∆NCOt 0.041 0.216 -1.000 -0.025 0.017 0.086 1.000 

∆FINt -0.017 0.242 -1.000 -0.084 -0.001 0.051 1.000 

 
Panel C: Winsorized at the 1

st
 and 99

th
 percentiles 

Variable Mean Std. Dev. Minimum 

Lower 

Quartile Median 

Upper 

Quartile 

75 
Maximum 

ROAt+1 -0.048 0.388 -3.051 -0.063 0.055 0.115 0.367 

ROAt -0.036 0.359 -2.791 -0.056 0.059 0.119 0.379 

TACCt 0.051 0.376 -1.640 -0.074 0.044 0.194 1.389 

∆WCt 0.005 0.138 -0.688 -0.034 0.006 0.053 0.518 

∆NCOt 0.041 0.205 -0.757 -0.025 0.017 0.086 0.903 

∆FINt -0.017 0.244 -1.002 -0.084 -0.001 0.051 1.051 

 

Panel D: Truncated at the 1
st
 and 99

th
 percentiles 

Variable Mean Std. Dev. Minimum 

Lower 

Quartile Median 

Upper 

Quartile 

75 
Maximum 

ROAt+1 -0.020 0.280 -3.039 -0.049 0.057 0.114 0.367 

ROAt -0.009 0.260 -2.763 -0.041 0.062 0.118 0.379 

TACCt 0.052 0.295 -1.624 -0.068 0.043 0.183 1.387 

∆WCt 0.006 0.112 -0.688 -0.032 0.006 0.051 0.517 

∆NCOt 0.041 0.168 -0.757 -0.023 0.017 0.083 0.903 

∆FINt -0.018 0.197 -1.001 -0.080 -0.002 0.047 1.051 
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Table 5: Earnings and Accruals Persistence: Regression Results 

 

This table reports regression estimates of the coefficients for equations (6) – (8) in the text using the raw 

data and various approaches to account for influential/outlier observations. Panel A uses the values of the 

raw data for each variable. Panel B winsorizes each variable with a +1.0 and -1.0 cutoff (following RSST 

2005). Panel C winsorizes each variable at the 1
st
 and 99

th
 percentiles. Panel D truncates each variable at 

the 1
st
 and 99

th
 percentiles. Estimation in Panels A-D is based on OLS. In Panel E the values of the raw 

data of each variable are used with robust regression based on MM-estimation. In Panels A-D standard 

errors are clustered. In Panel E robust standard errors are estimated using a bootstrap procedure (based on 

300 replications). Variable definitions are: ROAt,t+1 = Operating income after depreciation; TACCt = Total 

accruals using the balance sheet approach = ∆WC + ∆NCO + ∆FIN; ∆WCt = Change in net working 

capital where WC = current operating assets – current operating liabilities; ∆NCOt = Change in net non-

current operating assets where NCO = non-current operating assets – non-current operating liabilities; 

and, ∆FINt = Change in net financial assets where FIN = financial assets – financial liabilities (see the text 

for additional discussion of the variables). 

 

 Panel A: Raw data (OLS estimation) 

 

  Model (1) Model (2) Model (3) 

Variables Dependent Variable = ROAt+1 

        

ROAt 1.144*** 1.154*** 1.178*** 

 

(4.61) (5.01) (10.55) 

∆WCt 

  

-0.199 

   

(-1.20) 

∆NCOt 

  

-0.001 

   

(-0.01) 

∆FINt 

  

0.187 

   

(1.04) 

TACCt 

 

-0.037 

 

  

(-0.62) 

 Intercept -0.238 -0.232 -0.230 

 

(-1.23) (-1.22) (-1.20) 

        

Observations 65,994 65,994 65,994 

Adj. R
2
 0.011 0.011 0.011 
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 Panel B: +1 and -1 Winsorized data and OLS estimation 

 

  Model (1) Model (2) Model (3) 

Variables Dependent Variable = ROAt+1 

        

ROAt 0.822*** 0.837*** 0.839*** 

 

(74.94) (72.76) (72.99) 

∆WCt 

  

-0.096*** 

   

(-11.83) 

∆NCOt 

  

-0.022*** 

   

(-3.17) 

∆FINt 

  

-0.018*** 

   

(-2.97) 

TACCt 

 

-0.045*** 

 

  

(-11.40) 

 Intercept -0.010*** -0.007*** -0.009*** 

 

(-3.35) (-2.68) (-3.12) 

        

Observations 65,994 65,994 65,994 

Adj. R
2
 0.660 0.663 0.663 

 

 
 Panel C: 1 and 99% Winsorized data and OLS estimation 

 

  Model (1) Model (2) Model (3) 

Variables Dependent Variable = ROAt+1 

        

ROAt 0.869*** 0.877*** 0.880*** 

 

(57.49) (58.43) (58.54) 

∆WCt 

  

-0.124*** 

   

(-5.93) 

∆NCOt 

  

0.025** 

   

(2.13) 

∆FINt 

  

-0.004 

   

(-0.38) 

TACCt 

 

-0.029*** 

 

  

(-4.17) 

 Intercept -0.017*** -0.015*** -0.017*** 

 

(-4.98) (-4.45) (-4.86) 

        

Observations 65,994 65,994 65,994 

Adj. R
2
 0.645 0.645 0.647 
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 Panel D: 1 and 99% Truncated data and OLS estimation 

 

  Model (1) Model (2) Model (3) 

Variables Dependent Variable = ROAt+1 

        

ROAt 0.858*** 0.871*** 0.874*** 

 

(60.59) (57.06) (56.11) 

∆WCt 

  

-0.131*** 

   

(-11.49) 

∆NCOt 

  

-0.028*** 

   

(-4.61) 

∆FINt 

  

-0.017** 

   

(-2.27) 

TACCt 

 

-0.047*** 

 

  

(-10.64) 

 Intercept -0.012*** -0.010*** -0.011*** 

 

(-4.45) (-3.80) (-4.10) 

        

Observations 62,227 62,227 62,227 

Adj. R
2
 0.633 0.636 0.636 

 

 Panel E: Raw data and robust regression MM-estimation 

 

  Model (1) Model (2) Model (3) 

Variables Dependent Variable = ROAt+1 

  

   ROAt 0.849*** 0.863*** 0.866*** 

 

(176.17) (135.80) (170.133) 

∆WCt 

  

-0.067*** 

   

(-7.37) 

∆NCOt 

  

-0.032*** 

   

(-7.35) 

∆FINt 

  

-0.016*** 

   

(-3.07) 

TACCt 

 

-0.027*** 

 

  

(-9.65) 

 Intercept 0.009*** 0.010*** 0.010*** 

 

(5.31) (6.71) (6.62) 

        

Observations 65,994 65,994 65,994 

Adj. R
2
 0.339 0.341 0.341 

 


