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Abstract
Rapid advances in mobile computing technology have the potential to revolutionize organizational
research by facilitating new methods of data collection. The emergence of wearable electronic
sensors in particular harbors the promise of making the large-scale collection of high-resolution data
related to human interactions and social behavior economically viable. Popular press and
practitioner-oriented research outlets have begun to tout the game-changing potential of wearable
sensors for both researchers and practitioners. We systematically examine the utility of current
wearable sensor technology for capturing behavioral constructs at the individual and team levels. In
the process, we provide a model for performing validation work in this new domain of measure-
ment. Our findings highlight the need for organizational researchers to take an active role in the
development of wearable sensor systems to ensure that the measures derived from these devices
and sensors allow us to leverage and extend the extant knowledge base. We also offer a caution
regarding the potential sources of error arising from wearable sensors in behavioral research.
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The advent of ‘‘big data’’ collection and computing is revolutionizing the world, and thus it should

not be surprising that this development would eventually touch the lives of organizational research-

ers (George, Haas, & Pentland, 2014; Kozlowski, Chao, Chang, & Fernandez, in press). Advances

in mobile computing and sensor technology in particular have created the opportunity to transcend

the limits of traditional data collection instruments. These new technological developments have
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the potential to significantly advance research on individuals, teams, and multi-team systems.

However, the scholarly community has yet to address the questions related to the integration of

these new measurement methods into the extant knowledge base.

Group research has generally focused on constructs related to individual behavior within groups

(e.g., boundary spanning), group process (e.g., leadership emergence), and group structure (e.g.,

interaction patterns) (Greenberg & Baron, 1995; Marks, Zaccaro, & Mathieu, 2000; Mathieu, Heff-

ner, Goodwin, Salas, & Cannon-Bowers, 2000; Sparrowe, Liden, Wayne, & Kraimer, 2001). Tradi-

tionally, constructs in this domain have been gathered using retrospective self-reports obtained from

team members. The problems associated with retrospective self reports such as to measure these

attributes have been well documented, such as social desirability bias, halo, and leniency effects

(Donaldson & Grant-Vallone, 2002; Podsakoff, MacKenzie, Lee, & Podsakoff, 2003; Spector &

Brannick, 2010). Some researchers have attempted to overcome these limitations through video cod-

ing of interpersonal interactions. However, this approach tends to be resource intensive and

is usually restricted to short-term laboratory contexts. Recent technological advances in mobile

computing create the possibility of collecting high-resolution data related to social interactions in

unrestricted space over extended time periods.

Wearable sensors (WSs) are mobile devices containing electronic components that record the

environmental context of the device-bearing person. For example, mobile devices fitted with micro-

phones and Bluetooth modules can generate data streams describing ambient sound and proximity to

other devices. These low-order data streams have the potential to then provide the foundation for

higher-order measures of individual behavior and social interactions. The benefits of WS technology

have been a prominent topic in the practitioner and popular press outlets (e.g., Silverman, 2013).

Scholarly interest in this technology has also been significant, as evidenced by the Organizational

Behavior Division of the Academy of Management, which bestowed the 2013 Outstanding

Practitioner-Oriented Publication Award to the author of an article based on WS-generated data

(Pentland, 2012).

Relative to the substantial scholarly interest in leveraging WS technology, the related body of

research is somewhat limited, and there are many questions as to how to best employ WS-

derived data for measuring established behavioral and social constructs (Kim, McFee, Olguin,

Waber, & Pentland, 2012; Olguin & Pentland, 2010; Pentland, 2012). We begin the process of trying

to integrate this new measurement capacity into the extant knowledge base by conducting four dis-

tinct studies. These studies are aimed at (a) establishing construct validation protocols for WSs for

different types of research studies and (b) providing evidence from the application of such protocols

in WS deployment conditions that range from short-term laboratory experiments, with strict control

over environmental conditions, to long-term field studies, with little control over time or space. That

is, the sequence of studies considers WS-generated data streams ranging in duration from minutes to

weeks and systematically evaluates the utility of this novel data gathering method for the measure-

ment of interaction patterns in contexts where, in most cases, we have known true scores or the best

available alternative.

Our results provide initial evidence of both the promise and the perils of using WSs in behavioral

research. We also present research protocols that show how organizational researchers can take an

active role in the continued advancement of wearable sensor systems. The involvement of active

researchers in this area is sorely needed to ensure that the development of measures integrates with

the extant knowledge base. Like any measurement method, there are limits to what can be accom-

plished with WSs. However, when appropriately deployed, configured, and analyzed, WSs can cap-

ture variables such as boundary spanning, leadership emergence, and group structure without the

need for problematic retrospective self-reports, reports from others, or direct experimenter

observation.
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Wearable Sensors

As more WSs are offered on the market, researchers are faced with choices related to both the sensor

composition and configuration of these platforms. The WSs used in all of our studies were primarily

developed to measure interaction patterns among individuals and have been used in several previous

studies (e.g., Kim et al., 2012; Olguin et al., 2009; Olguin & Pentland, 2010), including the afore-

mentioned paper (Pentland, 2012) that was recognized by the Academy of Management in 2013.

This WS is produced by Sociometric Solutions and is a white ‘‘badge’’ about the same size as a deck

of playing cards worn around the neck of participants on a lanyard. Specifically, this WS uses a

Bluetooth sensor to measure physical proximity, an infrared detector to measure face-to-face posi-

tioning, an accelerometer for measuring body movement and posture, and microphones to measure

verbal activity (Olguin et al., 2009). After undergoing a series of computations, the raw data from

these sensors are used to create measures of lower level behavioral dimensions, such as body move-

ment, co-location, and verbal activity. These basic measures can then be used to create more abstract

constructs, such as network centrality, social dominance, cohesion, and so on.

We note that this is not the only WS in existence, and while the decisions related to sensor com-

position and configuration are critical, the selection of the appropriate WS should be informed by the

focal research question. A systematic comparison of different WS options currently available is out-

side the scope of this paper. It is important to highlight that WS technology is rapidly developing and

platforms for delivering sensors are changing quickly. Still, regardless of whatever platform one

uses, many of the component sensors that are used in these devices (Bluetooth, microphones, infra-

red, and accelerometers) are commodities that remain relatively constant across platforms. As such,

the primary focus of our research is on the individual component sensors rather than on a specific

platform. That is, even though Google Glass has been discontinued, all of the components that went

into that specific platform live on. Other new platforms will eventually be developed and replace or

complement existing ones. Just as alternative devices for delivering music have come and gone over

the years (phonographs, eight-track players, cassettes, mp3, etc.), there will always be music. Thus,

measurement work in this area of the organizational sciences should be directed at how to employ

the core component sensors as opposed to any one specific device.

Prior to getting into a detailed description of each of the four studies in this article, we should note

that a comprehensive construct validation effort of WSs is complicated for several reasons. First,

there are different sources of error, and the sources of these errors are not all equal when it comes

to construct validity concerns. For example, even though the WSs we study all come from the same

manufacturer, there are still variations in the sensitivity of each WS. This creates both ‘‘within-’’ and

‘‘between-’’ WS error variance even when the WSs are exposed to the exact same environmental

stimuli.

Within-WS variability can be attributed simply to the unreliability of any one of the component sen-

sors (e.g., microphone or Bluetooth). Whereas this particular source of error variance may be regrettable

in a perfect-world sense, it does not do serious damage to WS-based measures. A WS assesses the sur-

rounding environment several times each minute and generates an extremely large number of assess-

ments when worn for any length of time. This is analogous to a test with thousands of items, and

because random errors tend to cancel out over time, even small correlations between each item and the

test as a whole would generate a highly reliable assessment (Nunnally & Bernstein, 1994).

However, there is also some degree of between-WS variability because component WSs may

have different mean levels of detection when exposed to the same environment. For example, the

microphone in one WS might simply be more sensitive than the microphone in a different WS—

a phenomenon that would be familiar to anyone who ever worked in a contemporary sound stu-

dio—but perhaps not an organizational researcher who has not worked closely with microphones.

Unlike within-WS variance, which is a relatively benign problem for validity, between-WS
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variability causes bias that accumulates over time, if not detected, and can threaten validity. This is a

serious problem because it means that some WSs will always over-detect relative to other WSs, and

the effect of this error compounds over time (rather than cancelling out), leading to systematic errors

in measurement. For example, an individual wearing a WS with a more sensitive Bluetooth sensor

will always report a more central position than is warranted in the proximity network relative to

other individuals.

Second, even if one ignores variability within and between WSs, the fact that measurements take

place at a raw level (i.e., the sensors themselves), the basic level (e.g., co-location and verbal activ-

ity), and at a higher level (e.g., dominance, mirroring, etc.) further complicates matters. The relation-

ships between the raw data and higher level measures are not straightforward due to the complexity

(and proprietary nature) of the post-processing algorithms. In particular, the proprietary nature of the

post-processing algorithms makes it difficult to explain why different results at higher levels emerge

from the exact same data taken at raw levels.

Third, as we noted previously, WS platforms and individual components present a moving target.

Thus, any construct validation effort has to be appreciated as a single snapshot in time. Still, one

snapshot in time is useful for serving as a benchmark for the future, where additional snapshots can

be strung together to create the evolving trajectory of this technology. The information provided at

one point in time can also focus future development efforts. This is especially the case with the initial

development of WSs because this development has been dominated by engineers, who lack exper-

tise in psychometrics and may not have intimate familiarity with the nature of history of central con-

structs in the organizational sciences.

With these caveats in mind, Table 1 provides an overview of the four studies conducted as part of

this effort. In general, the studies move from short-term, highly controlled, and small space contexts

to long-term, totally uncontrolled, and unrestricted space contexts. Taken as a whole, the four studies

presented here provide initial evidence regarding the construct validity of raw, basic, and higher

level measures derived from WSs across a range of contexts where they might be deployed in pro-

grams of research involving individuals and groups.

Table 1. Summary of Studies.

Channel(s)
Tested

Study
Characteristics Treatment

Treatment
Source Measures

Study
Setting

Study
1

Bluetooth and
infrared

3 Sessions
24 WSs
19 conditions

Distance and barriers Fixed board Raw Lab

Microphone 3 sessions
24 WSs
3 conditions

Tone/background noise Speaker Raw Lab

Study
2

Microphone 18 Sessions
24 WSs

Scripted conversations Human
participants

Processed Lab

Study
3

Bluetooth and
microphone

24 Sessions
20 WSs

Boundary spanners,
emerging team
structure

Experimental
condition
Human
participants

Raw and
processed

Lab

Study
4

Bluetooth and
infrared

20 Sessions
13 WSs

Field setting with
perceived interactions

Human
participants

Raw Field

Microphone 10 Sessions
13 WSs

Unscripted
conversations

Human
participants

Processed Field

Note: WSs ¼ wearable sensors.
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Study 1

The purpose of Study 1 was to evaluate the raw data recorded via Bluetooth, infrared, and micro-

phone sensors as well as the ability to use these sensors to derive measures of co-location and verbal

activity. In a field study context, the WSs may be prone to error due to jostling of the WS, between-

subject differences, environmental noise, and other sources of contamination. As a baseline, the

focus of Study 1 was on the ability to detect true score variance in a context where these aspects

could be well controlled (i.e., a lab setting).

Evidence Regarding Co-Location

Co-Location and Bluetooth. We performed a range of tests to evaluate the ability of WSs to detect

co-location via Bluetooth and infrared. First, we discuss the method and results for Bluetooth. In this

test, we placed 12 WSs each on two corkboards and placed these boards on easels at varying dis-

tances (i.e., 13 distances ranging from 1 meter to 40 meters) and with varying barriers between them.

Because the detection interval of Bluetooth sensors is approximately 30 seconds, the boards were

left in place for 3 minutes at each experimental condition to allow for repeated detections. Each con-

dition was repeated three times, and the WSs were powered down and then powered back up in

between each session to evaluate any variability that may result from this process. This approach

allowed us to simultaneously compare multiple WSs in multiple sessions and partition both

within- and between-WS variance. This design also allowed us to compare the relative magnitude

of within- and between-WS variance to the amount of variance arising from varying the experi-

mental conditions, that is, the environmental stimulus.

The Bluetooth sensor generates a categorical measure of detection (on/off) comprised of a time/

date stamp, sender WS number, receiver WS number, and a radio signal strength indicator (RSSI)

that varies based on the intensity of signal between WSs ranging from –65 to –95 with the larger

value (–65) representing a higher strength when compared to the lower value (–95). We only consid-

ered detections across the corkboards at distances varying between 1 and 40 meters. We counted the

number of detections per WS and divided by 36 (3 minutes and 12 potential detected WSs) to arrive at

an average detection count per minute for each WS. The box and whisker plot in Figure 1 presents

these values. The number of observations for this plot is 936, which is the result of 24 WSs � 3 ses-

sions � 13 experimental conditions (i.e., distances). Bluetooth technology is expected to detect to a

distance of 10 meters, so in a perfect world, each WS would provide 2 detections per minute at

each of the distances up to 10 meters, with no detections at distances greater than 10 meters

(Hallberg, Nilsson, & Synnes, 2003). This 2.0 detection count may be unattainable in practice

because each Bluetooth module independently cycles every 30 seconds; therefore, it is unlikely

to reach this technological maximum. Still, the WS should detect at least 1.0 per minute per

co-located WS, or else one would draw the false inference that the two WSs were not co-

located when in fact they were.

It should also be noted that the WS platform allows for researchers to adjust the sensitivity of the

Bluetooth sensor, and how one sets this parameter will affect results. Thus, this setting becomes an

important further consideration in the decision-making process for researchers employing WSs. For

the first run of this test, we used the maximum sensitivity and relied on Bluetooth RSSI as a threshold

in follow-up analyses, as previously recommended (Olguin et al., 2009). In subsequent studies reported

in this article that focus on broader behavioral and social constructs, such as boundary spanning, lead-

ership emergence, and social structure, we will see that decisions regarding how to set parameters and

cutoffs will have a major impact on inferences. Thus, our results here foreshadow those results.

As we noted earlier, the performance for manufactured component sensors can vary from the

technical specifications, so it should not come as a surprise that there is variability both within and
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between Bluetooth sensors. However, taken as a whole, the results provided mixed support for the

potential for the Bluetooth sensor to serve as a pure measure of co-location. First, the count of detec-

tions at 20 meters is far less than that at 10 meters, which is somewhat comforting. However, the fact

that WSs detect at distances well beyond 10 meters is concerning because detections at long dis-

tances increase the risk of over-detection. Forty meters is far beyond the distance one would expect

for meaningful interactions between two people, and yet, in some instances, the WSs would still

report co-location of individuals separated by this distance.

In addition, the count of detections observed for any one distance varies a great deal. The lack of

uniform detection counts at the same distance means that there is a potential that some WSs may

over- or under-detect when compared to the true score. As we note earlier, the degree to which this

error variance is within versus between WSs is important in terms of whether or not the error would

either cancel out or compound over time. Our subsequent analyses examine this issue more specif-

ically. As an aside, while also investigated, we noted very little variance attributable to WS by dis-

tance interactions.

Although informative, Figure 1 is limited because it does not consider RSSI. According to pre-

vious calibration efforts, an RSSI of –80 represents an appropriate threshold for face-to-face inter-

actions (Olguin et al., 2009). Prior research has shown that a distance of 1 to 4 meters is an

appropriate estimate for personal and social space (Hall, 1990). Thus, in an ideal case, filtering

detections based on RSSI would result in a high detection count at 1 to 4 meters with a sharp

drop-off in detection count at distances greater than 4 meters.

To test this threshold, we reduced the data set to include only detections of –80 RSSI or greater.

Again, for RSSI signal strength, the larger value such as –70 is a stronger signal than an RSSI of –90.

Figure 2 illustrates the results. In Figure 2, the detection count does appear to decline at a sharper rate

as distances increase when compared to Figure 1. In addition, the detection count is significantly

reduced at longer distances. However, there remains variance in the number of detections as well

as detections at distances beyond 4 meters. Collectively, these results suggest that how you set the

threshold can affect the performance of Bluetooth as a measure of co-location, at least in this specific

context. Nevertheless, there remains substantial error variance in detection count at each specified

Figure 1. N ¼ 936 All Bluetooth detection count per minute by distance. Note. The plots are a typical box and
whisker such that the mean is indicated by the horizontal line, the 25th and 75th percentiles are indicated by the
lower and upper shaded box, the whiskers and dots represent more extreme values in detection count.
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distance. While not shown, other detection thresholds were also investigated, and none consistently

provided the desired drop-off as the distance between WSs exceeded 4 meters.

Figures 1 and 2 illustrate the role of distance in assessing co-location, but the analyses reported

there do not account for the presence of obstacles, such as office walls or clothing (e.g., jacket) when

it comes to detecting co-location via Bluetooth. That is, two individuals may be within 4 meters of

each other, but if they are separated by a wall, they would be precluded from interaction, voiding the

notion of co-location. Thus, we tested the degree to which various obstacles affected the inferences

regarding co-location that might be derived from Bluetooth.

Figure 3 represents the Bluetooth detection count per minute using an RSSI threshold of –80 with

physical barriers that might be encountered in a typical work environment such as a body, coat, wall,

and window. For comparison purposes, the distance between the boards were approximately 1.5

meters for each of the barriers. The sample size for this plot is 432, which is the result of 24 WSs

� 3 sessions� 6 experimental conditions. In an ideal case, this figure would indicate a normal detec-

tion count for the coat and a count of zero for the other barriers. This would indicate that the WS can

maintain its detection capabilities when clothing is worn over the WS but that the WS does not detect

co-location across barriers that would normally impede face-to-face communication.

The results illustrated in Figure 3 indicate that the detection count remains high for the coat, but it

also remains high for many other barriers. These results suggest that the WSs are robust to measuring

co-location when clothing is worn over the WS; however, the WSs may over-report co-location in

the presence of other barriers that effectively preclude interaction between adjacent parties, such as a

cubicle wall. Therefore, it is essential that researchers who deploy WSs be aware of the precise phys-

ical layout of contexts where the WSs are to be employed.

Although the figures discussed previously illustrate the ability of Bluetooth to detect co-location

when there is a known signal, these analyses do not discriminate between errors that can be traced to

within- versus between-WS variability. As emphasized earlier, if a large portion of the variance in

detection counts is due to differences within WSs, then much of this error will cancel out over long

deployments where, in essence, there may be thousands of ‘‘items’’ and individuals’ scores will con-

verge on their true scores. In contrast, if the variability is between WSs, then the error will compound

over long deployments and substantially bias the results for specific individuals.

Table 2 provides results from our analysis that partitions the error variance into these two sources.

These data are the same as those represented in Figures 2 and 3, thus representing only detections of

Figure 2. N ¼ 936 Bluetooth detection count per minute RSSI > -80.
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RSSI –80 or greater. The sample size is 24 WSs � 3 sessions � 19 conditions resulting in 1,368

observations (the conditions in this analysis include both distances and barriers). In this analysis, the

WS detection count is the dependent variable, and a series of regression models are used to partition

variance. In the first regression, we include the session fixed effects to measure the amount of var-

iance due to the repeated sessions. The results of this Model 1 suggest that only 0.5% of the variance

is due to session, which is what one would expect since the sessions were identical replications of

each other. Model 2 includes both session and distance fixed effects. The results indicate that con-

ditions matter—explaining an incremental 59% of the variance in Bluetooth detection count. This

indicates that variance in detection counts is reflective of the experienced conditions.

In Model 3 from Table 2, we include the WS fixed effect that captures the amount of between WS

variance. These fixed effects predict an incremental 8.2% of the variance in Bluetooth detection

count, which is all attributable to between-WS variance. In Model 4, we include a measure for

within-WS variance by including an interaction between the session and WS fixed effect dummy

codes. The inclusion of these fixed effects assesses the potential for within-WS variance beyond ses-

sion, experimental condition, and WS fixed effects. The inclusion of these effects explains an incre-

mental 1.4% of the variance in detection count. Finally, in a separate analysis, we included a WS

experimental condition interaction, which explained 0.7% of the variance in detection count.

Table 2. Results of Ordinary Least Squares (OLS) Regression Predicting Bluetooth Detection Count.

Bluetooth Detection Count per Minute Model 1 Model 2 Model 3 Model 4

Session fixed effects Included Included Included Included
Experimental condition fixed effects Not included Included Included Included
WS fixed effects Not included Not included Included Included
Session �WS Fixed Effects Not included Not included Not Included Included
R2 .005 .595 .678 .692
DR2 .591** .082** .014

Note: N ¼ 1,368. Radio signal strength indicator (RSSI) > –80. WS ¼ wearable sensor.
**p < .01.

Figure 3. N ¼ 432 Bluetooth detection count per minute RSSI > -80.
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Therefore, while there is some meaningful between-WS variance, it does not appear that there is

significant within-WS variance in different sessions or experimental conditions.

In summary, almost 60% of the variance is due to variations in the experimental conditions,

which is encouraging; however, 8% of the variance was systematic bias attributed to specific WSs

that would not average out but instead compound over time. This means that this variance would be

misattributed to individuals when in reality, it should be attributed to the specific WS worn by the

individuals.

Co-Location and Infrared. In addition to Bluetooth, co-location can also be derived from the infrared

sensor. Compared to Bluetooth, infrared detection requires more strict conditions in order to indicate

proximity. With the WSs studied as part of this research, infrared detection should occur within 1.5

meters of separation, provided the faces of the WSs are within 15 degrees of being parallel with one

another based on the technical constraints of the technology (Olguin et al., 2009). Following the

same protocol that we developed and discussed previously with Bluetooth, we examined the infrared

detection count for WSs summed by WS, session, and distance to create 936 observations (i.e., 24

WSs � 3 sessions � 13 distances). Ideally, the detection count should be high at 1 meter and dimin-

ish to 0 at greater distances. Also, the detection count should not vary by WS.

The results of this analysis are documented in the box plot in Figure 4, where we plot the detec-

tion count per minute at each of the distances. This figure shows that the count of detection is

approximately 16 detections per minute at 1 meter and that this detection count significantly

decreases, with only a few outlier detections at 2 meters and no detections at greater distances. Most

people would consider 3 to 4 meters a reasonable distance for face-to-face social interactions, and

therefore one might conclude that infrared sensors under-detect co-location. This figure also shows

that there is a small amount of variance in the detection counts at 1 meter that is attributable to

between-WS variability at this range. Again, a person with a more sensitive infrared sensor would

be attributed more co-location inferences than a person with a less sensitive WS, and this difference,

which should really be attributed to the WS, would not cancel out over long-term deployments.

As was the case for Bluetooth, we also examined the impact of common barriers on infrared

detection using the same protocol. As one would expect, infrared detections are very sensitive

to any physical break in line of sight. Therefore, we would expect that detection counts would

be zero across all barriers, even though ideally a coat would not preclude an inference of co-location.

Figure 4. N ¼ 936 Infrared detections per minute by distance.
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Figure 5 illustrates the actual detection counts for each of the barrier experimental conditions, show-

ing that there are essentially no detections through any of the opaque barriers. However, there is a

detection count greater than zero through a window, and there was a high level of between-WS

variability in terms of how the window affected reports of co-location.

While helpful in understanding the potential of WSs to capture physical proximity via infrared,

these figures do not precisely measure the amount of variance resulting from the two different

sources of error. In Table 3, we use ordinary least squares (OLS) regression across all the infrared

detection counts across both distance and barrier experimental conditions. The number of observa-

tions for this study is 1,368 based on 24 WS � 3 sessions � 19 conditions. Using infrared detection

counts as the dependent variable in Model 1, we include the session fixed effects, which should

explain no variance since each of the sessions were exact replications. These findings are largely

consistent with the results shown in Table 3. In Model 2, we include the experimental condition,

which explains 94.4% of the variance in detection count. This is a strong indicator that detection

count is reflecting the actual conditions. In Model 3, we include the fixed effects for the WSs. Model

3 documents that only 0.3% of the variance in detection count is attributable to between WS varia-

bility. Finally, in Model 4, we include the interaction of session and WS fixed effects. The inclusion

of these interaction variables explains only 0.1% of the variance in infrared detection count. In sum,

these results suggest that nearly all of the variance in detection count for infrared sensors is a result

of differences in the true signal rather than between- or within-WS variability. Despite the lack of

Figure 5. N ¼ 432 Infrared detections per minute by barrier.

Table 3. Results of Ordinary Least Squares (OLS) Regression Predicting Infrared Detection Count.

Infrared Detection Count per Minute Model 1 Model 2 Model 3 Model 4

Session fixed effects Included Included Included Included
Experimental condition fixed effects Not included Included Included Included
WS fixed effects Not included Not included Included Included
Session �WS Fixed Effects Not included Not included Not included Included
R2 .000 .944 .947 .948
DR2 .944** .003** .001

Note: N ¼ 1,368. WS ¼ wearable sensor.
**p < .01.
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between- and within-WS variance, the inability for infrared to detect co-location at 3 to 4 meters

severely limits the utility of the sensor for assessing co-location, and this is likely to exacerbate

in real-world contexts where this sensor is attached to a platform worn loosely round the neck

and chest.

Because the dependent variables in all these tests were frequency counts, they technically require

a different model specification. Thus, we replicated all these analysis using a Poisson model approx-

imation and found that the results converged across methods. We report ordinary least square results

here because they provide a means for partitioning variance across alternative sources that is com-

monly understood (i.e., R2). Results based on Poisson regression are available from the authors.

Summary. Regardless of the analytical method, the results associated with assessing co-location via

Bluetooth and infrared suggests that the majority of the variance in both sensors can be explained by

differences in proximity. Moreover, we find that there is between-WS variance in Bluetooth detec-

tion counts that will not average out and will compound over longer deployments. We also find little

evidence of within-WS variance, suggesting that the WSs appear relatively stable in detection counts

for infrared and Bluetooth across deployment sessions. We also show that the threshold value that is

chosen will have a strong impact on the results of Bluetooth, which again foreshadows results we

will discuss later in this article when we attempt to measure higher level behavioral and social con-

structs. Finally, the inability of infrared to detect at 3 to 4 meters severely limits the sensors utility in

measuring co-location.

Evidence Regarding Verbal Activity

We performed a range of tests to assess the ability of the microphone to detect verbal activity. In the

first test, we placed 24 WSs in a stack (because microphone ports are on top of the unit) with all of

the microphones pointed directly at a stereo speaker 1.5 meters away. To conduct this test, we used

two tones; the first tone covered frequencies from 20 Hz to 2,000 Hz (which we refer to as a

‘‘sweep’’ tone) over a period of 30 seconds, and the second tone was stable at 170 Hz for 10 seconds

(this is the average frequency of human voice; Titze, 1994). To further put this in perspective, the

standard 88 key piano has a range of 32 Hz to 4,186 Hz, with ‘‘middle C’’ on the piano registering at

261 Hz.

Each experimental session took place in a quiet, isolated office and included 10 seconds of ambi-

ent noise, 30 seconds of the sweep tone, 10 seconds of ambient noise, 10 seconds of the stable tone,

and concluded with 10 seconds of ambient noise. This procedure was repeated across 3 sessions,

turning the WSs off and back on between sessions. It should be noted that there are multiple data

streams that come from the microphones. First, there is a measure of raw volume. Second, the micro-

phone provides both amplitude and frequency levels as well as variability within four frequency

bands (Olguin et al., 2009). Our analysis covers overall volume and the filtered data within the first

frequency band intended to correspond to human vocalization, including frequencies between 85 to

222 Hz (Olguin et al., 2009). Volume and amplitude both refer to the overall loudness of sound (size

of the sound wave). Frequency refers to the pitch of the sound (concentration of sound waves).

In this analysis, we focus only on the first frequency band. All microphone measures are automat-

ically aggregated every 8 milliseconds within the device, which in turn outputs an average of these

values once per second. We coded each second of the data using a dummy code for each session,

each WS, and the experimental condition (including background noise, sweep tone, and stable tone).

Because there were multiple seconds for each experimental condition, these values were then col-

lapsed by averaging per experimental condition. Therefore, the number of observations for this anal-

ysis was 24 WS � 3 experimental conditions � 3 sessions for a total of 216.
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In Tables 4 and 5, we conduct a regression analysis for raw volume and filtered amplitude,

respectively. In these analyses, the dependent variables are the resultant measures of volume and

amplitude, and the independent variables are dummy codes that capture the tones, sessions, and

WSs. In an ideal case, all of the variance in our dependent variables should be attributed to the tones.

As shown in Table 4, Model 1 includes the session fixed effects, which account for 0.3% of the

variance in volume. We attribute this to subtle differences in ambient background noise between

sessions. Even though the room and surrounding area seemed quiet when conducting tests, it was

not a completely soundproof room. In Model 2, we include the 2 experimental condition dummy

codes with background noise as the base condition. The coefficients for both tones are positive and

significant and taken together explained 67% of the variance in volume.

In Model 3, we include the effect for WS, and this accounts for 23.3% of the variance in volume.

Thus, whereas the means of volume for each of the tones is statistically different from background

noise, there remains a high level of variance between WSs. This is troubling because bias between

WSs may cause a researcher to inappropriately assign speaking to some individuals due to WS dif-

ferences rather than true variance in volume. One potential solution to this would be to employ the

first derivative of this measure. However, this may create more problems than it solves because this

creates a measure of ‘‘within-person’’ speaking, which is rarely the index of interest for most beha-

vioral researchers. Most behavioral research is interested in ‘‘between-person’’ differences in

Table 4. Results of Ordinary Least Squares (OLS) Regression Predicting Volume.

Volume Model 1 Model 2 Model 3 Model 4

Sweep tone .012** (.001) .012** (.001) .012** (.001)
Stable tone .013** (.001) .013** (.000) .013** (.000)
Constant .019** (.001) .010** (.001) .004** (.000) .004** (.001)
Session fixed effects Included Included Included Included
WS fixed effects Not included Not included Included Included
Session � Microphone Fixed Effects Not included Not included Not included Included
R2 .003 .672 .961 .973
DR2 .670** .233** .012

Note: N¼ 216. Standard errors in parentheses. Background noise is base condition for this regression analysis with the tones
being dummy codes for the other respective conditions. WS ¼ wearable sensor.
**p < .01.

Table 5. Results of Ordinary Least Squares (OLS) Regression Analysis for Predicting Amplitude.

Amplitude Model 1 Model 2 Model 3 Model 4

Sweep tone .004** (.000) .004** (.000) .004** (.000)
Stable tone .000** (.000) .000** (.000) .001** (.000)
Constant .005** (.000) .003** (.000) .003** (.000) .003** (.000)
Session fixed effects Included Included Included Included
WS fixed effects Not included Not included Included Included
Session �WS fixed effects Not included Not included Not included Included
R2 .003 .947 .968 .977
DR2 .944** .038** .009

Note: N¼ 216. Standard errors in parentheses. Background noise is base condition for this regression analysis with the tones
being dummy codes for the other respective conditions. WS ¼ wearable sensor.
**p < .01.
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speaking (that is, who speaks the most and the least), not ‘‘within-person’’ differences in speaking

(that is, is one specific person speaking more or less than he or she usually does).

In Model 4, we include an interaction between the session and WS fixed effects in order to mea-

sure the consistency with which the WSs detect their environment. The inclusion of these interaction

variables explains an incremental 1.2% of the variance in volume; therefore, it appears that any

given WS is relatively consistent in detecting sound.

In Table 5, we repeat this analysis employing speaking band amplitude as the dependent variable.

In Model 1, the session fixed effects account for 0.3% of variance in amplitude. In Model 2, as

expected, the coefficient for both the sweep and constant tone are positive and statistically signifi-

cant. The inclusion of these dummy code measures of tone explains 94.4% of the variance in ampli-

tude. This suggests that nearly all of the variance in amplitude is a result of environmental sound. In

Model 3, we include WS fixed effects, which explains an incremental 3.8% of the variance in ampli-

tude. This is significantly less than the between-WS effects observed when predicting volume.

Finally, in Model 4, we include the interaction of the session and WS fixed effects, which accounts

for only 0.9% of the variance in amplitude, suggesting that overall, the WSs are relatively reliable in

detecting sound across deployment sessions.

Summary. These tests seem to suggest that simple amplitude measures of select frequency bands may

be less susceptible to microphone-induced bias. However, there are two caveats to this conclusion.

First, the tests reported here were very short in duration, and the potential for longer tests to provide

more valid data cannot be ruled out. Second, the tones tested here were not actual human voices.

Thus, with these two caveats in mind, we turn to Study 2, which addresses both of these limitations.

Study 2

In Study 2, we focused specifically on the validity of the microphone and the WS proprietary ana-

lytics to properly assign speaking. Unlike all the tests performed as part of the first study, Study 2

involved human participants interacting with each other in a laboratory setting. Because it involves

human participants who may vary in both speech tone and volume, this study is less tightly con-

trolled than Study 1, but in terms of foreshadowing, it is more tightly controlled than Study 3. Study

2 essentially simulates how one might use WSs as part of a laboratory study to simply measure ver-

bal activity (as an alternative to employing coded videotapes of interactions). Study 3, on the other

hand, simulates how one might use WSs as part of a study assessing behavioral constructs, such as

boundary spanning and emergent leadership.

In Study 2, four undergraduate participants, sitting 1.5 meters apart, wore two WSs each and read

a structured script according to the outline in Table 6. During this period in our study, the WSs we

were studying had a flaw in the firmware that led to a random failure in the microphone that man-

ifested itself in a flat-line audio reading across the entire session. This problem with flat-lining was

later resolved with a firmware update, but following the manufacturers recommendations at the

time, the research participants wore two WSs in order to minimize data loss.

The script included a variety of speakers, speaking times, and conversation structures. In order to

maintain conformity with the prescribed script, each session was supervised by a research assistant

who kept participants on track. The purpose of this study is to determine the potential of the WS to

identify the speaker and assess speaking time accurately. This setting provides an opportunity to

assess the effectiveness of speech detection using the WSs in conjunction with their supporting

speech detection algorithms in a context where the true score was known.

The data were collected across 8 sessions with different subjects in each session, and, as men-

tioned previously, each of the 4 participants was wearing 2 WSs, which resulted in a total of 64

WS samples and 16 sessions. Among these sessions, 8 WSs failed, resulting in 6 failed team
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sessions. Therefore, the number of observations for this study is 160, which results from 10 sessions

� 4 roles � 4 minutes. The actual WS indicated speaking seconds are reported in Table 7.

It is important to note that there are an array of speech detection algorithms available to research-

ers to analyze vocal activity patterns (Proakis, 1999). In addition, the provided proprietary analytical

software supports a number of settings to identify the speaker and assess speaking time. Thus, this is

another area where researchers would need to make important decisions on which algorithm to

employ based on their research question and contextual setting. In order to make this determination

for our study, we employed every possible setting combination available at the time for a total of

eight analyses. Using these outputs, we evaluated each according to their accuracy, that is, the

degree to which the output represented the true score value. In order to conserve length, we include

results for just two of the algorithms here, namely, the manufacturer recommended algorithm and an

optimized algorithm that was the most accurate setting combination in this context.

In Table 7, we show the correlations among these different predictors and the actual speaking

time. This table shows that the correlation among speech as measured by the two algorithms is

r ¼ .47, p < .01. The results in Table 7 suggest that the correlation between the manufacturer rec-

ommended algorithm and actual speaking is r ¼ .15, p ¼ ns, whereas the correlation between the

optimized algorithm and actual speaking is r¼ .36 p < .01. The divergent performance of these algo-

rithms with respect to the detection of actual speaking in this experiment illustrates that for both the-

oretical and conceptual reasons, it is critical to establish a proper match between WS, speech

detection logic, research question, and environment. Moreover, the low correlations for the algo-

rithms suggest limitations in the current technology for accurately measuring speaking time.

Summary. Taken as a whole, the results from Study 1 and Study 2 indicate that the WSs we examined

performed better when assessing co-location relative to verbal activity. However, it also needs to be

kept in mind that these studies were both short in duration, and longer time intervals would generate

many more measurement opportunities. Thus, even though signal detection is low, across thousands

of detections, this could still generate reliable measures. This is analogous to a situation where a

very long test, like the Scholastic Aptitude Test (SAT), can generate reliable estimates of aptitude

despite very low (r ¼ .05) item-total correlations. With this in mind, we performed two additional

Table 7. Correlations, Means, and Standard Deviations of Speaking Measures.

Measure Mean SD 1 2

1. Speaking time 15.00 8.69 —
2. Manufacturer recommended algorithm speaking time 23.71 15.81 0.15 —
3. Optimized algorithm speaking time 15.31 9.61 0.36** 0.47**

Note: N ¼ 160.
**p < .01.

Table 6. Seconds Spoken by Each Participant.

Speaker A Speaker B Speaker C Speaker D

Minute 1 30 10 10 10
Minute 2 10 30 10 10
Minute 3 10 10 30 10
Minute 4 10 10 10 30
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studies that lengthened the duration for detection and where we targeted broader behavioral and

social constructs.

Study 3

Studies 3a and 3b attempt to evaluate the ability of WSs to assess boundary spanning behavior and

leadership emergence, respectively. Like Study 2, in Study 3a, we have known ‘‘true scores’’ in a

relatively controlled setting where we knew precisely who was and who was not a boundary spanner.

In Study 3b, although we do not have true scores for leadership emergence, we had the best known

alternative—aggregated ratings from other team members regarding the focal individual, where we

show high levels of agreement between raters. Although boundary spanning and leadership emer-

gence are hardly the only concerns researchers have with respect to team dynamics, it is a reasonable

first step for assessing the extent WSs can be utilized to measure constructs of interest to organiza-

tional researchers and hence show relevance for the extant knowledge base.

Evidence Regarding Boundary Spanning

A boundary spanner refers to an individual who coordinates work-related activities between estab-

lished formal boundaries (Davison & Hollenbeck, 2012; Marrone, 2010). Traditional measures of

boundary spanning behavior often rely on self-reports that are subject to well-known biases, espe-

cially when individuals are asked to respond to boundary spanning activities over an extended period

of time (e.g., week, months, quarters) (Podsakoff & Organ, 1986). Thus, it was imperative in this

context to have a known ‘‘true score’’ for validating WS-based measures of boundary spanning

behavior.

Study 3a was conducted in a laboratory context where the individuals wearing WSs were working

in three independent teams of four to five members each separated in isolated rooms of a larger

research suite. While these teams worked, a team of observers (n ¼ 3 to 6 who also wore WSs)

moved back and forth between the rooms, sometimes aggregating themselves in a separate room

of the suite to compare notes. This was all conducted as part of a class, and the observers were, with

few exceptions, not members of the research team but merely advisors to the students in this class. In

this context, the observers are known boundary spanners moving between the boundaries of the

teams, whereas the team members themselves rarely, if ever, crossed boundaries during the course

of the session. We gathered data across 13 separate sessions, and in the end, we had data from 235

individuals, of which 31% were known boundary spanners and 69% were known to not be boundary

spanners.

Across all sessions, the WS reported a total 190,607 total Bluetooth detections, and we analyzed

these data to see if one could discriminate boundary spanners from non–boundary spanners using

Bluetooth detections set at alternative levels. That is, boundary spanning status (coded 0 or 1) should

show a significant positive correlation with between-team detections and a statistically significant

negative correlation with within-team connections because the non–boundary spanners were

together at all times. Based on the results from Study 1, we also varied the detection setting to see

if this had any impact on the resulting number of detections or the correlations between boundary

spanning status and within- and between-team detections.

Table 8 shows the descriptive statistics and correlations between the total number of within-team

ties and between-team ties at varying Bluetooth RSSI cutoff values ranging from –70 to –90. For

RSSI signal strength, the larger value of RSSI, such as –70, would be a stronger signal relative to

–90. Within-team ties were calculated as the sum of all Bluetooth detections between a WS worn

by an individual and all other WSs that were assigned to his or her team, including boundary span-

ners that were also assigned to their own team. Between-team ties were calculated as the sum of all
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Bluetooth detections from other WSs that were worn by individuals not assigned on the same team.

As noted in Study 1, the Bluetooth sensor generates a categorical measure of detection (on/off), a

time/date stamp, sender WS number, receiver WS number, and an RSSI ranging from –65 to –95

that generally varies with the distance between WSs.

The first and second columns of Table 8 show that a significant number of detections are removed

at more stringent thresholds. That is, we see much higher means and standard deviations at the more

liberal –90 RSSI threshold and much lower means and standard deviations at the more conservative

–70 RSSI threshold. Thus, as one would expect, the threshold setting has a major impact on the mean

and standard deviation of detections.

More critically, the correlations reported in the third and fourth columns of Table 8 show

that the threshold setting also has an impact on the validity of the WS for detecting boundary

spanners. The correlation between known boundary spanning status and between team detec-

tions was highest (r ¼ .43, p < .05) at more liberal settings and then decreased steadily as set-

ting became more stringent (r ¼ .16, p < .05). It should be noted that the manufacturer

recommended setting provided by the manufacturer (RSSI > –80) did not result in the highest

validity in this context (r ¼ .32, p < .05), and instead, a researcher in this context would gen-

erate a more valid measure by using a more lenient threshold when it came to predicting the

boundary spanning behavior of individuals.

Table 8 shows that this same pattern of results was reinforced when we examined within-team

ties. Non–boundary spanners should show more within-team ties relative to boundary spanners

because they never left the room that they occupied with their other team members. Indeed, the cor-

relation between boundary spanning status and within-team detections was negative and statistically

significant. This correlation was strongly influenced by the set threshold, however, and again, the

highest validity (r ¼ –.63, p < .05) was found with the most liberal threshold, and this decreased

steadily as the threshold became more stringent, bottoming out at –.21 (p < .05). It was also the case

that the manufacturer recommended setting did not produce the highest validity in this context (r ¼
–.47, p < .05).

Table 8. Descriptive Statistics and Correlations of Study Variables.

Variables Mean SD Bspan WTT

Boundary spanner 0.31 0.46 —
RSSI > –90

Within-team 259.88 139.36 �0.63* —
Between-team 176.85 119.28 0.43* –0.07

RSSI > -85
Within-team 171.28 102.96 �0.60* —
Between-team 82.14 69.73 0.42* –0.06

RSSI > –80
Within-team 79.40 59.46 �0.47* —
Between-team 26.74 29.91 0.32* 0.06

RSSI > –75
Within-team 32.94 31.44 �0.32* —
Between-team 8.50 11.53 0.25* 0.18*

RSSI > –70
Within-team 9.03 11.11 �0.21* —
Between-team 2.06 3.80 0.16* 0.32*

Note: N ¼ 235. RSSI ¼ radio signal strength indicator; Bspan ¼ boundary spanner; WTT ¼ within-team ties; BTT ¼ between
Team Ties.
*p < .05.
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Going beyond simply the count of ties, it is also instructive to see how well the social structure of

these teams is revealed by the WSs at various thresholds. Figure 6 depicts the differences between

the known co-location structure of our simulated environment and the structure generated by the WS

at two different Bluetooth signal cutoffs for two representative sessions. The top image represents

the ‘‘true’’ co-location structure of individuals during the simulated exercise. The next set of images

Figure 6. Bluetooth detection networks at different RSSI. Notes: RSSI ¼ Radio Signal Strength Indicator [-70,
-80, -90]; � ¼ boundary spanner.
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represents Bluetooth detections at a RSSI of –90 (most liberal cutoff), followed by the same picture

at more and more stringent cutoffs.

Clearly, these pictures show that the decision of which RSSI to use as a cutoff can have a pro-

found influence on the generated co-location structure. In our simulated lab environment, the most

liberal cutoff generated too many between-team ties for non–boundary spanners. As may be recalled

from Study 1, a Bluetooth signal can sometimes be detected across walls, and hence detections

between rooms cannot be ruled out in this case when the threshold is set at the most liberal level.

However, at the most stringent cutoff level, the WS data stream failed to generate all the known

within-team ties and thus was also problematic.

In this case, a more moderate setting of �75 generated a social structure that best matched the

known co-location network as a whole. This differed from the recommended value set by the manu-

facturer and also differed from the best setting for the simple detection of boundary spanners per se.

Thus, the best cutoff to employ in this context is also contingent on whether the primary interest is in

identifying boundary spanners at the individual level or the larger social structure at the team level.

One potential explanation for this is that because the correlation is based on variance, the liberal cutoffs

generate the largest standard deviation that creates the largest correlation. However, the errors of omis-

sion appear to be less of a problem in representing the whole network structure relative to the error of

commission (which quickly leads to an overly saturated graph). Thus, again the nature of the research

question and environmental factors drives the decisions regarding how to set threshold levels.

Still, although there are differences due to the chosen threshold, it is important to not lose sight of

the fact that when the best threshold is identified, the ability of the WSs to detect boundary spanners

and the co-location structure of these teams is quite impressive. If a researcher was not on site in this

facility on the evenings where this activity took place, that researcher would actually get a highly

valid picture when it came to boundary spanning and co-structure just from the appropriately ana-

lyzed Bluetooth data streams.

Evidence Regarding Emergent Leadership

Study 3b builds on Study 2 and Study 3a by focusing on using the microphone and, in particular,

using measures of verbal activity to predict leadership emergence in a team context. Leadership

emergence refers to the recognition of others that a particular individual is distinctive in terms of

having a strong degree of social influence within the group. Leadership emergence is of significant

interest to behavioral researchers because of the disproportionate influence that such individuals

have on the goals, structure, and processes of the group (Zaccaro & Klimoski, 2002).

Leadership emergence can be assessed with self-reports, but social desirability bias often intro-

duces error into such measures because of the societal value placed on being a leader or displaying

leadership qualities (DeRue & Ashford, 2010). Thus, measures of leadership emergence often

require the collection of reports from other people, but these measures are sometimes colored by

halo errors or similar-to-me biases. Still, at this point in time, a measure based on aggregated ratings

across a number of different raters who can be shown to agree is considered the best available stan-

dard for capturing this construct. In Study 3b, we focus on how the amount of time speaking as cap-

tured via a microphone can predict leadership emergence in newly formed teams.

For this study, we gathered data across 15 different sessions from the same research suite

described in Study 3a, each lasting between one and two hours. The teams that participated in Study

3a were not the same teams that took part in Study 3b, and hence these data are independent from the

data reported previously. In this case, each session included two to three newly formed teams, each

consisting of four to five members, working in a computerized simulation activity in a controlled

setting. In total, these sessions allowed us to observe 205 individuals nested in 43 teams.
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Within this setting, team members worked together to perform a complex, interdependent task

called LDX. This task is described in detail elsewhere (see Davison & Hollenbeck, 2012), but for pur-

poses here, we will note that it requires team members to initiate structure, coordinate efforts, and

make collective decisions. Team members speaking up in this context often results in their emergence

as a leader because as the team grapples for collective understanding and processes, team members

often rely on the more vocal members to coordinate activities and make important decisions.

We measured leadership emergence with items from a previously validated scale (Kent & Moss,

1994; Lord, Foti, & De Vader, 1984; Taggar, Hackew, & Saha, 1999). This scale is comprised of

four items focusing on whether the individual exerts influence, leads the conversation, and influ-

ences the team’s goals and directions. Leadership emergence ratings from all of the other team mem-

bers (provided immediately after completing the session) for the focal individual were then

averaged. The raters in this study were shown to agree in the sense that ICC(1), ICC(2), and rwg val-

ues were well above the cutoffs typically invoked to justify aggregation. For these data, the ICC(1)

was .35, ICC(2) was .71, and rwg was .91 (James, 1982; James, Demaree, & Wolf, 1984).

For measures of speaking, the WS data were collected, and the two speech detection algorithms used

in Study 2 were employed here to capture total speaking time (the number of seconds each individual

spoke). Thus, we have one measure of leadership emergence and two speaking measures from the WSs.

The summary statistics and correlations for our measures can be found in Table 9. Here we show

that the average total speaking time is 505.6 seconds according to the manufacturer recommended

algorithm whereas total speaking time is 229.8 seconds according to the optimized algorithm emer-

ging from in Study 2. This equates to approximately 8.4 to 3.8 minutes, respectively, of speaking on

average. While the correlation between these two measures is statistically significant (r ¼ .30, p <

.05), suggesting some overlap, the difference in the raw level between these measures is substantial.

In addition, we note that correlation differs from our findings in Study 2 that we partially attribute to

a firmware upgrade shortly after Study 2 was completed.

Turning to the predictive validity of alternative speaking measures for the criterion of leadership

emergence, we see that there was a small but statistically significant correlation between leadership

emergence and the optimized algorithm (r ¼ .14, p < .05). The correlation for manufacturer recom-

mended algorithm was actually opposite the proposed direction (r ¼ –.03) but not statistically sig-

nificant. Thus, we conclude that while the correlation between speaking time as measured by the WS

and leadership emergence is not strong, there appears to be some ability of the WSs to predict lead-

ership emergence via speaking time as measured with the optimized algorithm. Collectively, these

results suggest that the ability of the WSs and the supporting analytic software to predict leadership

emergence is conditional on the algorithm used to assess and assign speaking.

In conclusion, as part of the overall portfolio of studies, Study 3 extends Study 1 and Study 2 by

showing how one might use WSs to detect common constructs that might be of interest to behavioral

researchers. In addition, the paradigm underlying Study 3 simulates how a WS would perform in a

laboratory context with nonscripted human research participants where there are known true scores

(or the best alternative, that is, aggregated reports from others shown to agree on a validated scale).

Table 9. Summary Statistics of Speaking and Leadership Emergence.

Measure Mean SD 1 2

1. Perceptions of leadership 3.54 0.69 —
2. Manufacturer recommended algorithm speaking time 505.62 195.12 �0.03 —
3. Optimized algorithm speaking time 229.81 182.05 0.14* 0.30**

Note: N ¼ 205.
*p < .05. **p < .01.
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Study 3 is limited, however, in the sense that research participants were observed for only a short

time in a small and tightly controlled space. Study 3 does not simulate how WSs might be used

in less controlled field studies that might take place over wider space and time intervals. In Study

4, we seek to address these limitations.

Study 4

As previously mentioned, Study 3 attempts to simulate the use of WSs in laboratory contexts.

Although less controlled than Study 2, where human participants read scripts, there was sufficient con-

trol of time and space to know the true scores for the measures that we were validating. In Study 4, we

extend this portfolio of studies to examine how one might employ WSs in a field study where research

participants interacted in wide-ranging and uncontrolled space over an extended time period.

In this context, it is impossible to ascertain known true scores, and hence, unlike Study 1 through

Study 3, we used subjective self-reports and self-reported schedules as criteria for assessing WS per-

formance. Clearly, for reasons we noted at the outset of this article, these ratings provide a question-

able criterion, and if we had faith in these sorts of measures, there would be no need for WSs.

However, for comparison purposes, we use self-reports as a helpful proxy for our phenomena of

interest. In addition, beyond the issue of detection accuracy, we were also interested in deriving

some qualitative experience for a long-term deployment of WSs.

Specifically, Study 4 took place in a field setting and focused on the detection of co-location

using infrared and Bluetooth. For this study, the WSs were worn for a 6-week period by 14 individ-

uals working as part of an ongoing research team at a major university. This team included full pro-

fessors, assistant professors, senior graduate students, junior graduate students, and undergraduate

students who were part of two different departments in the same college. In addition to the 14 indi-

viduals, we placed 3 WS ‘‘base stations’’ in locations where these 14 individuals would be likely to

congregate (i.e., conference rooms and laboratories). Base stations are useful when there are a small

number of places where participants congregate because they provide triangulation opportunities for

assessing co-location.

Co-Location. For the first part of Study 4, we focused on the Bluetooth and infrared sensor to determine

the degree to which WS ratings of co-location converged with self-ratings of co-location in an uncon-

trolled field study where participants wore WSs for six weeks as part of their normal work life on and

off campus. In this context, we tested the degree to which weekly self-ratings of co-location were cor-

related with weekly data from the WSs at various levels of Bluetooth strength. As we noted when dis-

cussing the results from Study 1, a conservative Bluetooth signal level threshold led to greater

discrimination of proximity. Here we examine multiple levels of Bluetooth RSSI because in this study,

we consider a more realistic context for the use of the WSs in a field setting. Understanding the con-

vergence of Bluetooth and surveys of co-location at different levels of Bluetooth RSSI is important in

order to understand best practices of using Bluetooth detection data as a measure of co-location.

In this case, we do not know exactly when or where these participants were co-located through the

week outside of a regularly scheduled weekly project meeting. To determine the accuracy of the WSs

to detect co-location, we triangulate between two other measures. First, we collected self-reports of

co-location from the participants on a weekly basis. Second, for the participants of this study, their

respective role in the team and their weekly schedules are known by our research team. Thus, while

convergence between co-location as measured by the WSs and these two other measures are not entirely

free from bias attributable to the limits of the self-reported data, evidence of convergence is still a

relevant criterion for assessing the validity of the Bluetooth and infrared data to assess co-location.

Participants in this study completed a weekly survey asking the number of hours they spent with

each other member of the team and the chosen locations containing a base station. The values ranged
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from none to over four hours on a 6-point scale. Because the correlation was moderately high (r ¼
.48) among the surveys for connections among team members, we averaged the two measures, and

when one member failed to complete the survey, we used the other individual’s score for that mea-

sure of co-location. Because of the lack of interactions during a holiday week, one week was

dropped from this analysis. Therefore, the number of observations for this study is 423, which is

an average of 85 dyads across 5 weeks.

As shown in Table 10, there was convergence among all these measures of co-location, although

the magnitude of this varied substantially. Less stringent cutoffs generated higher convergent valid-

ities (r ¼ .51, p < .05), and these validities decreased steadily as the cutoff became more stringent,

bottoming out at r ¼ .26, p < .01. Self-reported co-location correlated higher with Bluetooth than

infrared across all thresholds investigated.

Triangulation is another approach to evaluate the WSs ability to measure co-location. To assess

the combination of both infrared and Bluetooth to measure co-location, we conducted a regression

analysis, which is reported in Table 11. In this analysis, we predict the survey measures of co-

location, and in Model 1, we include the count of Bluetooth detections of –90 or greater RSSI. This

coefficient is positive and significant (b¼ 0.005 p < .01), as expected, and accounts for 26.5% of the

variance in self-reported co-location. In Model 2, we include the total count of infrared detections.

Finally, in Model 3 we also include infrared total by minute. This coefficient is not significant (p ¼
.21), and the inclusion of this variable explains an incremental 0.2% of the variance in self-reported

co-location, which again is not statistically significant.

In sum, these results suggest that while Bluetooth and infrared supposedly offer complementary

measures of co-location, they in fact do not converge when it comes to assessing co-location. In

Table 10. Correlations Between Bluetooth Detections and Self-Reported Co-Location.

Variable Mean SD 1 2 3 4 5 6 7

1. Self-report 2.20 1.29 —
2. Bluetooth > –90 75.73 141.12 0.51 —
3. Bluetooth > –85 51.13 97.78 0.51 0.96 —
4. Bluetooth > –80 25.91 57.80 0.45 0.83 0.94 —
5. Bluetooth > –75 13.63 37.01 0.37 0.68 0.81 0.95 —
6. Bluetooth > –70 7.21 25.53 0.26 0.53 0.64 0.80 0.94 —
7. Infrared total 3.69 18.88 0.14 0.39 0.47 0.61 0.75 0.91 —
8. Infrared total by minute 0.45 1.53 0.23 0.49 0.57 0.68 0.76 0.83 0.86

Note: N ¼ 423. All correlations are significant p < 0.01. Numbers presented after the greater than sign represent different
radio signal strength indicator (RSSI) thresholds utilized for identification of co-location.

Table 11. Results of Ordinary Least Squares (OLS) Regression Predicting Self-Reported Co-Location.

Self-Reported Co-Location Model 1 Model 2 Model 3

Bluetooth > –90 0.005** (0.001) 0.005** (0.001) 0.005** (0.001)
Infrared total �0.005 (0.003) �0.011* (0.004)
Infrared total by minute 0.091 (0.073)
Constant 1.844** (0.059) 1.843** (0.060) 1.837** (0.059)
R2 0.265 0.269 0.272
DR2 0.004 0.002

Note: N¼ 423. Standard errors in parentheses. –90 represents the radio signal strength indicator (RSSI) threshold utilized for
identification of co-location.
*p < .05. **p < .01.
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addition, the combination of these predictors does not appear to explain substantively more variance

in self-reported co-location. Given the space and battery consumption of the infrared sensor, one

might question the added value of this sensor relative to just the Bluetooth sensor alone, at least

when worn loosely around the neck and chest.

Although correlations such as those reported in Table 10 are informative when it comes to con-

vergence of tie strength among independent actors, this does not consider the structure of a whole

network. To understand the convergence of co-location structure measured with self-reports versus

Bluetooth, we constructed the co-location networks that would have been generated for this specific

set of people via alternative methods, using the �90 Bluetooth threshold to measure the edges with

the individuals and office locations as the nodes. Interestingly, this is a less conservative threshold

than Study 3a, which we employed because there were more substantial physical barriers between

participants in this study. This further reinforces the importance of configuring sensor calibrations to

the research question and physical context.

The upper image of Figure 7 represents the network according to self-reported co-location, and

the lower image of Figure 7 indicates the network according to Bluetooth detection. Although there

Figure 7. Upper image co-location network based on survey responses. Lower image co-location network
based on Bluetooth detections RSSI>-90. Line width indicates the time spent interacting. Key: UG: Under-
graduate students; GS: Graduate students; MGTP: Management professors; MKTP: Marketing professors;
MTS Lab: Research Lab; MGT: Management office; MKT: Marketing office.
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is some degree of convergence and divergence between these two figures, in general, the co-location

networks generated by these alternative sources were very similar. A researcher who did not know

this set of people would get a strikingly accurate picture of their co-location network from a set of

WSs. For example, the strong connections between the undergraduates (UG) and the MTS labora-

tory are strong for both networks as well as the connections between the graduate students (GS) and

professors within departments (MGTP/MKTP).

Still, there were some discrepancies across sources, and it was instructive for us to examine these

at a more molecular level. For example, two graduate students had a class with one of the professors

and thus spent a minimum of 3 hours per week co-located as part of this course. The self-report

results do not seem to ‘‘count’’ these interactions—almost as if the subjective reporters did not con-

sider the interactions within class as relevant—but the WSs did. In addition, there was an unusually

high number of detections between one undergraduate student and the base station set up in the

laboratory. After following up on these results, we learned that the undergraduate student’s WS was

accidently left on in the laboratory without being worn.

Summary. In general, these results suggest that there are significant limitations in using infrared for

measuring co-location. Further, these results suggest that while there are some errors regarding both

self-reported and Bluetooth measures of co-location, it appears that the WSs offer significant poten-

tial for measuring co-location networks via Bluetooth sensor technology.

Verbal Activity. The second part of Study 4 focuses on the convergence between the WS-derived mea-

sures of speaking dominance with self-reported measures of speaking dominance. As noted previ-

ously, we do not have true score measures of who dominated conversations; however, we do

know that all people were together in the same room. Immediately after each meeting, the partici-

pants completed a survey indicating the degree to which various participants dominated the conver-

sation relative to not speaking on a scale of 1 to 5. These ratings were then averaged across raters to

establish a measure of dominance and rank ordered for each person for a given meeting. To align the

measures with the WS data, we took the total speaking time of the participants and rank ordered the

participants based on the number of speaking seconds. We then correlated the survey measure with

the ranked measures.

The results of this analysis are shown in Table 12. The number of observations for this analysis is

80, based on the fact that it captures activity at 12 separate meetings with attendance ranging from 5

to 9 participants. As illustrated in Table 12, the correlation between the two speech detection algo-

rithms underlying the calculation of verbal dominance reached an encouraging r¼ .75, p < .05. This

is not surprising as convergence between algorithms is expected to increase with the duration of the

study. Although strictly speaking the number of observations for generating the correlation reported

in Table 12 is 80, in reality, because most of the WSs fire several times a minute (or second), the

number of observations (or ‘‘items’’ in psychometric parlance) across the 12 roughly one hour meet-

ings is well into the thousands. Therefore, the number of observations greatly increases the

Table 12. Summary Statistics of Ranked Dominance.

Measure Mean SD 1 2

1. Survey ranking 3.95 2.11 —
2. Manufacturer recommended algorithm speaking rank 3.95 2.11 0.53** —
3. Optimized algorithm speaking rank 3.96 2.11 0.53** 0.75**

Note: N ¼ 80.
**p < .01.

Chaffin et al. 23

 at MICHIGAN STATE UNIV LIBRARIES on December 1, 2015orm.sagepub.comDownloaded from 

http://orm.sagepub.com/


opportunity to converge on the true score of dominance. Table 12 also shows that the two different

operationalizations converged when it came to predicting other reports of dominance, with both cor-

relating exactly the same with participant ratings (r ¼ .53). Therefore, the two approaches to mea-

suring speech in this study showed similar levels of convergent validity.

Summary. Based on this set of results, taken as a whole, we conclude that although the convergence

between the WS and survey measures is not perfect, it appears that the WSs offer some potential to

identify dominant speakers in a field study setting. If a researcher was not at these meetings and was

not able to survey the participants after each meeting, the researcher would nonetheless have some

degree of knowledge about what took place in this room based solely on WS reports. Although the

degree of convergence is modest, this fact needs to be considered in light of the limitations of the

subjective self-reports, which are far from perfect, and thus place an upper limit on convergence.

Discussion

The advent of ‘‘big data’’ collection and computing is revolutionizing the world in general, and thus

it should not be surprising that this would eventually touch the lives of behavioral researchers. There

are many different reactions that we as social scientists could take to these developments. First, we

could go into denial and hope this is just a fad that will pass over in due time. Certainly, the evidence

we have provided here regarding WSs is far from perfect when it comes to assessing behavioral con-

structs, thus leaving room for denial. This response might be especially attractive because as a dis-

cipline, we seem to have become so accepting of the limits of retrospective self-reports and other

reports for capturing behavioral measures that we act as if those limitations do not exist. We do not

believe that denying the value of WS-generated data is a constructive stance to take toward these

technological developments. WSs are here to stay, and the opportunity to use this moment in time

to make game-changing adaptations to business as usual should not be squandered.

One might also take the stance that big data as captured by WSs may have value someday, but we

should wait for the engineers to perfect these devices before we adopt them in our research. Again,

the evidence presented here is not perfect when it comes to supporting the construct validity for

some of the measures derived from the WSs. Hence, one could simply ask the engineers to do their

psychometric homework and come back to us when the evidence is stronger. We believe this ‘‘wait

and see’’ attitude is also unwarranted for two reasons.

First, the technological challenges associated with building platforms such as this, along with the

accompanying software and analytic algorithms, are nontrivial. Engineers with the skills to over-

come these challenges need to be steeped within their own disciplines. Building effective WSs

requires a complex set of skills associated with understanding of the capacity of an ever increasing

array of sensors, batteries, and the necessary design and manufacturing acumen to mass produce reli-

able devices at a feasible cost. WSs have to operate reliably despite being jostled, dropped, covered,

and in one case in Study 4, slammed inside a car door. It is a lot to ask of scientists who have the

expertise to do all of this to also be experts in psychometrics. For example, within the field of psy-

chometrics, it is well understood that item-total correlations are maximized when the variance for

the dichotomous variables approaches the maximum (i.e., base rate value of .50). Thus, one potential

means for establishing the threshold value for a sensor is to choose the value that creates this specific

base rate. This is an insight that may be more familiar to a psychometrician relative to an engineer

who is unfamiliar with test construction and construct validation principles.

Second, even if these individuals were to develop the psychometric skills we take for granted in

the behavioral sciences, the potential that they might derive measures and constructs that differ from

what already exists within our literature would be a risk that is too great to tolerate. That is, we can-

not also expect this set of people to be experts in the extant scientific literature on individuals,
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interpersonal dyads, groups/teams, and larger organizational structures. Yet, this would have to be

the case to prevent a situation where WS engineers start generating new constructs on their own that

overlap little with the constructs upon which our theories and knowledge base have developed over

the last one hundred years in behavioral sciences. The ability to employ WSs as a game-changing

development in the sciences will require that we integrate the constructs and measures that emerge

from this measurement technology with the extant knowledge base. It would be a loss if we were

unable to leverage the current knowledge base and then have to ‘‘start over from scratch’’ with these

new constructs and measures. Thus, we do not feel that a ‘‘wait and see’’ attitude is an appropriate

reaction to these developments.

Finally, a third reaction that one might have toward this new technology is to simply accept it as

is, place WSs on research participants, cross our fingers, and then hope for best. There is very little in

the evidence that we present here that would warrant this course of action. Uninformed and uncri-

tical use of this technology is particularly hazardous because of the highly interdependent nature of

decisions related to construct (e.g., level of analysis), technology (e.g., sensor type), and analytical

approaches (e.g., algorithms). These challenges are exacerbated by the nontransparent nature of the

proprietary analytical process for creating measures of behavioral constructs generated by WS data.

In our opinion, the stance that we, as behavioral and social scientists, should be taking toward

these new technological developments is to work alongside engineers in order to help improve the

measures derived from WSs and integrate them into the extant knowledge base. That is, starting with

the extant knowledge base and validated measures as the initial groundwork, we need to ask ques-

tions such as ‘‘How can boundary spanning, as traditionally defined and measured, be effectively

captured with data generated with WS technology?’’ ‘‘How can cohesiveness as traditionally

defined and measured be effectively captured with data generated with WS technology?’’ and ‘‘How

can ‘tie strength’ as traditionally defined and measured be effectively captured with data generated

with WS technology?’’

Although this entails a great deal more effort than ‘‘denial,’’ or ‘‘wait and see,’’ or ‘‘blindly and

uncritically hoping for the best,’’ we believe this challenge is deserving of our efforts. In some cases

that we document here, the current generation of WSs actually performs with almost striking accu-

racy. We were impressed by the strong convergence in the co-location networks generated by the

Bluetooth data in Study 3 and Study 4. To think that someone who did not know or survey this set

of individuals could so accurately know their social structure was remarkable. Of the basic measures

that are generated by the WSs in this study, in our opinion they identify co-location very well as is,

especially when the data are collected over long durations.

As a means of detecting verbal activity, the WSs we studied performed moderately well although

not nearly as well as was the case for co-location. Although we did not have any true scores for Study 4,

this was a long duration study where the two different measures of speaking, generated by two different

algorithms, converged with each other and showed similar correlations with self- and other reports of

speaking frequency. However, this was not the case with Study 2, where the two different measures did

not converge (and the optimized algorithm was more accurate for predicting a known true score). The

difference here may be attributable to the length of time people were studied, and across all measures

we examined here, the longer the time period (i.e., the more items), the better the results.

Recommendations and Best Practices

In terms of going forward, there are several recommendations that can be made based on these

results when it comes to planning, conducting, and reporting a WS-based study.

When Planning a Research Project. In the planning phase, when choosing a wearable sensor

system, researchers should carefully evaluate whether sensor type, attachment location, and mode
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(e.g., lanyard, wristband, etc.) align well with the source and nature of the behavioral signal to be

captured. Regardless of the choice of WSs, we strongly encourage allocating time for extensive sen-

sor pretesting to inform decisions related to the observation time and analytical strategy.

For example, in pretesting Bluetooth-based proximity sensors, we recommend that researchers

utilize the sensors on subjects with a known co-location network in a physical setting resembling

the actual study environment. This approach allows for an informed decision related to what Blue-

tooth signal strength might constitute a legitimate interaction opportunity.

A similar approach can be used for audio sensors. Building on known conversation patterns,

researchers should develop a clear understanding of the joint impact of variation in sensor sensitivity

and particular choices of speech detection algorithm on measurement accuracy.

At present, researchers can expect that the components of wearable sensor systems are subject to

rapid technological advances. To leverage these advances, manufacturers operate using short devel-

opment cycles resulting in frequent updates and reduced product longevity. Over the course of a

longitudinal study, investigators may have to accommodate multiple pretesting episodes in order

to confirm the optimal configuration and measurement consistency.

Contingent on the findings during sensor pretesting, researchers should adjust observation peri-

ods. For example, we found that the wearable sensors used in our study exhibited a high level of

random error. Longer study windows increase the likelihood that measurements will converge on

the true score. Our experience would suggest that one-shot laboratory studies where the observation

period is short (one or two hours) may be better off employing digital video recordings.

Finally, in the planning and pretesting phase, it is critical for researchers to scrutinize both the

firmware installed on the sensors as well as the software solution used to download and analyze

the data. In our studies, we found that performance of the sensors can vary dramatically based on

the firmware release and that the options and workflow varied significantly with different software

solutions. In the planning phase, it is critical for researchers to pretest the robustness of these factors

prior to substantial data collection.

When Conducting Data Collection. When conducting the study, we suggest that researchers pay close

attention to subject compliance, procedures for monitoring and maintaining sensor function, and the

configuration of sensors in the research site.

For research using WS technology, compliance of the research subjects is paramount. In partic-

ular, when sensors capture interaction data, as illustrated in Study 2, the failure of a single sensor or

the failure of an individual to wear the sensor has a significant impact on overall network data qual-

ity. To minimize this problem, we recommend researchers enhance compliance by educating sub-

jects to properly wear the sensor and regularly monitor data stream integrity to ensure sensor

function and subject compliance. This involves downloading WS data on a regular basis and analyz-

ing it near real time to identify anomalies (e.g., sensors not moving or not detecting speech).

Research involving WSs should also include procedures for device charging and synchronization.

The WSs used here required regular charging and clock synchronization to avoid temporal drift.

Drifting clocks in WSs can lead to the WSs assessing the same phenomenon but at different recorded

times, which would greatly affect the accuracy of interaction-based analytics.

Finally, the configuration of the sensors at the research site can be critical to effective data col-

lection. For example, because Bluetooth sensors report some level of random error within a partic-

ular timeframe, it can be useful to place base stations at strategic locations (e.g., lunch room) for

triangulation purposes when it comes to detecting co-location in well-known meeting areas.

When Reporting and Evaluating Research. When working with WS technology, it is important for

researchers to report and justify their choices regarding data analysis and interpretation (e.g., RSSI

Bluetooth signal strength threshold, speech detection algorithm setting, and the data aggregation
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approach) because the substantive results may vary as a function of these decisions. In terms of

Bluetooth-based proximity sensors, the interaction patterns reported by the WS will vary signifi-

cantly based on the RSSI signal strength threshold adopted as well as what an interaction is deemed

to look like. For example, a more liberal approach might count any Bluetooth detection between a

dyad as a 60 second interaction while a more conservative approach would require joint detection by

both nodes and count that as only a 30 second interaction. These decisions should be made on the

basis of the severity of the risk of false positive versus false negative errors when it comes to detect-

ing co-location.

In addition, the choice of speech detection algorithm can significantly alter how the situation is

characterized, and therefore, rather than recommending a particular speech detection algorithm or

settings, we suggest that through pretesting, researchers choose, justify, and report their choice of

speech detection algorithm because a universally optimal setting is unlikely to exist. In addition,

we encourage researchers to pay particular attention to the type of algorithm selected (i.e., within-

vs. between-individual based measures) in light of their research question. It is critically important to

understand that within-person measures assess how much one is talking in one context versus how

much that same person is talking in a different context. Between-person measures assess how much

one person is talking relative to other people who are all in the same context. These are very different

phenomena. Failure to match the measure with the phenomena of interest actually seems to be quite

common when we see others present WS-based research at professional meetings.

Relatedly, the high data resolution afforded by WSs provides a myriad of different approaches for

aggregating these data to arrive at measures of a given construct. In this work, we aggregated based

on simple sums of detections or seconds spoken. For other research, it may be of interest to take a

variance or other aggregation approach. We suggest that these aggregation decisions should be

explicitly disclosed and justified in future research using WSs.

Finally, it is important for researchers to consider and minimize the risk of non-sensor wearers in

a given study. While the central value proposition of wearable sensors relates to the accurate mea-

surement of behavioral aspects related to human interaction, researchers operating in uncontrolled

environments need to evaluate the effects of potential signal contamination by non-instrumented

subjects.

Conclusion

As one of the first independent studies to examine WSs across the wide variety of contexts in which

they might be employed in behavioral research, we obviously have only scratched the surface of

what needs to be done to realize the full potential of these devices for all forms of behavioral

research. Certainly, we see this as a conversation starter for the field of behavioral research, and this

will hardly be the last word given the rapid changes in both sensor diversity and potential platforms

for sensors. In particular, with respect to new platforms, it is hard to anticipate all of the potential

sensor configurations (accelerometers, microphones, Bluetooth, optical scanners) and attachment

modes (badges, wristbands, lapel pins, glasses, and implants). We do believe this is a conversation

that is worth having and a conversation that should be led by the scientific community and not one

simply left to engineers or to the non-refereed popular press (e.g., Silverman, 2013). We hope as a

first effort the studies reported here serve as a catalyst and model for future researchers as we try to

radically expand the way we think about measuring behavioral constructs.
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